長野		 事門学校	開講年度 令和06年度 (2	 2024年度)	授業科目	マイクロコンピュータII		
科目基礎			(-	,	,	-		
科目番号	CIIJIK	0029		科目区分	専門 / 必	修		
授業形態 授業				単位の種別と単位				
開設学科電子制御工				対象学年	4			
開設期前期				週時間数	2			
教科書 /教材書:「			「無人搬送車設計マニュアル」電子制 マイコン完全マニュアル」オーム社 な		大須賀 威彦「マイ	成彦「マイコン入門講座」電波新聞社,藤澤幸		
担当教員		小野 伸						
到達目標	<u> </u>	13 23 11						
		応用システ <i>L</i> 説明できる.	」を開発する上で必要な基本的インター これらの内容を総合的に満たして学習	フェース設計法, 教育目標の(D-1)	マイクロプロセッ) および (D-2) (サシステム構築に必要なメモリシス の達成とする.		
ルーブリ	ノック							
			理想的な到達レベルの目安 標準的な到		ベルの目安	未到達レベルの目安		
CPUのバスできる.	スシステム	について説明	CPUのバスシステムの動作を理解 し、バスシステム上に接続する周 辺回路の設計ができる.		テムの動作を理解 ム上に接続する周 里解できる.	CPUのバスシステムの動作が理解できない.		
アナログインターフェースにつ て説明できる.			A/DやD/A変換のようにアナログ信 号をコンピュータシステムで取扱 う場合の基本回路や動作,その設 計方法が理解できる.	号をコンピュータ)ようにアナログ信 タシステムで取扱 各や動作について	A/DやD/A変換のようにアナログ信号をコンピュータシステムで取扱うための基本回路などが理解できない.		
メモリシステムについて説明でき る.			メモリシステムを構築するための 方法や考え方,設計方法が理解できる.	メモリシステムを 基本的な考え方が	を構築するための が理解できる.	メモリシステムを構築するための 方法や考え方が理解できない.		
学科の至	到達目標耳	頁目との関						
学習・教育	育到達度目		習・教育到達度目標 (D-2)					
教育方法								
総合実験実習の題材である無人搬送車の制御部を対象とし、マイクロプロセッサを概要 回路設計に必要な基礎知識を習得する。本科目は、企業で回路設計やソフトウェア経験を活かし、マイクロコンピュータ等について講義形式で授業を行うものである						利用したマイクロコンピュータ周辺 開発等を担当していた教員が,その		
授業の進め	め方・方法	・授業方 なお, こ		は講義を中心とし,演習問題や課題を課す. 科目は学修単位科目であり,授業時間30時間に加えて,自学自習時間60時間が必要である,事前・事後学習				
	<u> </u>	応じて来 <先修科 多上の区分	4目・後修科目>先修科目はマイクロコ		修科目は制御工学			
授業計画	<u> </u>							
		週	授業内容		週ごとの到達目標			
		1週	組込プロセッサとH8		組込用プロセッち できる.	プロセッサの特徴やH8プロセッサの概要を説明 5.		
		2週	CPUのバスシステム	PUのバスシステム CI		CPUにおけるバスシステムの機能や役割について説明できる.		
		3週	H8/300Hのバスサイクル		H8/300Hのバス信号や制御線の動作が説明できる.			
		4週	出力回路の設計		ディジタル出力回路の設計ができる.			
	1stQ	5週	入力回路の設計		ディジタル入力回路の設計ができる.			
前期		6週	アナログ信号の取扱い		ディジタルシステムにおけるアナログ信号の取扱いにつ			
		 7週	DA変換の基本		いて説明できる. R-2R抵抗回路網/	ニースDΔ変換注が説明できる		
						R抵抗回路網によるDA変換法が説明できる. DH抗原路網を使用したDA変換同路が設計できる.		
		8週	DA変換回路の設計		R-2R抵抗回路網を使用したDA変換回路が設計できる ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
	2ndQ	9週	理解度の確認		CPUのバスシステムと周辺回路についての理解度を確 認			
		10週	AD変換の基本		AD変換の基本方式が説明できる.			
		11週	AD変換回路の設計		AD変換デバイスを使用したプロセッサインターフェ- ス ス			
		12週	メモリシステムの基本		が設計できる. ROM / RAM, SRAM / DRAM について説明できる.			
		13週	メモリデバイス					
		14週	SRAMインターフェース		る. 基本的なSRAMインタフェースが説明できる.			
		15週	メモリシステムの設計			p的なSRAMインタフェースが説明できる。 AMを用いたメモリシステムの設計設計ができる.		
		13/5	- C - J - J - J - J - J - J - J - J - J		AD変換やメモリシステム設計等に関する理解度の確認			
		16週	前期末達成度課題	ı	AI) 公 四 で ス 十 II ・ 	システム設計等に関する理解度の確認!		

評価割合											
	試験および期末課 題	小テスト	平常点	レポート	その他	合計					
総合評価割合	70	0	0	30	0	100					
配点	70	0	0	30	0	100					