科目基礎 科目番号 授業形態		専門学校	【 開講年度 令和05年度	1 1 /2 /	授業科目				
科目番号	AT CIT				•	制御工学 I			
		5432		科目区分	専門 / 必修	<u> </u>			
		講義		単位の種別と単位数		学修単位: 2			
開設学科				対象学年	4	2			
開設期		後期		週時間数	2				
		12-27-73	 [学-技術者のための, 理論・設計から	1		空中 日本 マイ・マック とう			
教科書/教材	才	エクト		○天衣ま (-) 豆愉奴伽	11付子八子・同刊	宇守口子仪制御工子教月建筑ノロン			
担当教員		榎本 隆.							
到達目標									
2. ブロッ 3. 過渡特 4. 定常特 5. 周波数 6. フィー	ク線図を 性につい 性につい 特性につい ドバック	用いたシスラ て,ステップ て,定常偏差 ハて,ボート	D入出力特性を表現できる テム表現が理解できる プ応答を用いて説明できる 皇を用いて説明できる 「線図を用いて説明できる 「料別法(ナイキストの安定判別法)(こついて説明できる					
ルーブリ	ック					10			
			理想的な到達レベルの目安	標準的な到達レベル		未到達レベルの目安			
伝達関数に	よるシス	テムの表現	伝達関数を正確に導出できる	伝達関数の導出方法	を説明できる	伝達関数の導出方法を知らない			
ブロック線 現	図による:	システムの勃	を ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	ブロック線図の直列合、フィードバック簡単化できる	結合, 並列結 結合をすべて	ブロック線図の構成要素を理解できない			
過渡特性の	評価		ステップ応答における過渡特性の 評価指標について, すべて説明で きる	ステップ応答におけ 評価指標について, 明できる	る過渡特性のいくつかを説	過渡特性の評価指標について,全く説明できない			
定常特性の	評価		定常偏差の求め方を導出できた上で, 正確に定常偏差を算出できる	知っている		定常偏差について説明できない			
ボード線図 現	による周	皮数応答の割	基本要素を結合して得られるシス テムの周波数応答をボード線図で 表現できる	基本要素のいくつか 波数応答をボード線 る	たついて, 周 図で表現でき	ボード線図を知らない			
ナイキスト	の安定判別	引法	ナイキストの安定判別法を用いて , フィードバック制御系の安定性 を正確に判別できる	ナイキストの安定判 定判別の方針を説明	別法による安 できる	ナイキストの安定判別法を説明できない			
学科の到	達目標耳	頁目との閉	り						
教育方法		· · · · · · · · · · · · · · · · · · ·							
概要 授業の進め 注意点	方・方法	ぶ、また 伝達関数 ほぼ毎回	活の中で我々はあまり意識せずに使っているが、車やエアコン、冷蔵庫など、身の回りにあるほとんど全ての動制御の機能が取り入れられている。本講義では、伝達関数、周波数応答を中心とした古典制御の基礎を学、適宜課す演習を通して、講義内容の理解を深める。 , ブロック線図、時間応答、周波数応答、安定性に関する基礎事項を一通り説明する。の授業で、講義内容を復習するための自学自習用課題を出題する。 演習は自分で考えて実際に解き、計算に慣れておくこと、本科目は、ラプラス変換・逆変換の基礎知識を前提本科目は学修単位適用科目であるため、課題の提出状況やその内容により、合格の対象とならないことがあるな条件は講義中に示す、本科目は、授業で保証する学習時間と、予習・復習及び課題レポート作成に必要な標己学習時間の総計が、90時間に相当する学習内容である。						
				の欠課					
		多上の区分							
☑ アクティ	ィブラーニ	ング	□ ICT 利用	□ 遠隔授業対応		□ 実務経験のある教員による授業			
授業計画	<u> </u>								
		週	授業内容	调点	ごとの到達目標				
		1週	イントロダクション	講	養の目的,成績	評価方法等について理解する			
		2週	ラプラス変換・逆変換	典型部分	フィードバック制御の仕組みを説明できる 典型的な信号をラプラス変換できる 部分分数分解や平方完成に基づいて逆ラプラ				
		3週	微分方程式によるモデリング		きる 典型的なシステムについて,動特性を表現するモデル (微分方程式)を導出できる				
		4週			(((((((((((((((((((
	3rdQ	一大型	山丛生风奴		フノフス変換を用いて伝達関数を得出できる 直列結合, 並列結合, フィードバック結合を簡単化*				
後期		5週	ブロック線図	きる 上	3 '	ロ, フィー 「ハック品日を副単化しいら構成されるブロック線図を簡単化			
IX.74]		6週	システムの時間応答	応領 初期	逆ラプラス変換を用いて、インパルス応答やステップ 応答を導出できる 初期値の定理や最終値の定理を用いて、応答の初期値 ・最終値を導出できる				
		7週	基本要素とその時間応答		基本要素(6種類)の名称を説明できる 時間応答の観点から,基本要素の特性を説明できる				
l		1			ステップ応答を用いて過渡特性の評価指標を説明できる 定常偏差について説明できる 定常偏差を算出できる				
		8週	時間応答の評価指標	定常					

		10週 11週 12週		ベクトル軌跡			基本要素のベクトル軌跡の特徴を説明できる ベクトル軌跡の概形を描くことができる						
				ボード線図			微分要素,積分要素,1次遅れ要素,2次遅れ要素のボ ード線図の特徴を説明できる						
				ボード線図の合成			ボード線図を合成できる						
		13週		制御系の安定性			安定条件を説明できる 伝達関数の極の位置から安定判別できる						
		14週	-	フィードバック制御		卸系の安定判別法		ナイキストの安定判別法を用いてフィードバック制御 系の安定判別ができる					
			往	復習		後半の講義内容の復習る		复習を行う	 :行う.				
16週 期				肨訪	式験								
モデルコアカリキュラムの学習内容と到達目標													
分類 分野					学習内容	学習内容の到達目標		到達レベル	授業週				
専門的能力						伝達関数を用いたシステムの入出力表現ができる。				4	後4		
		の専 電気・間 系分野			制御	ブロック線図を用いてシステムを表現することができる。			4	後5			
	分野別の					システムの過渡特性について、ステップ応答を用いて説明できる。			4	後8			
	分野別の 門工学					システムの定常特性について、定常偏差を用いて説明できる。			きる。	4	後8		
						システムの周波数特性について、ボード線図を用いて説明できる。			4	後11			
						フィードバックシステムの安定判別法について説明できる。			4	後14			
分野横断的 能力	汎用的技能		汎用的技能		汎用的技能	書籍、インターネット、アンケート等により必要な情報を適切に 収集することができる。				3	後2,後3,後 4,後5,後 6,後7,後 8,後9,後 10,後11,後 12,後13,後 14,後15		
						どのような過程で結論を導いたか思考の過程を他者に説明できる。				3	後2,後3,後 4,後5,後 6,後7,後 8,後9,後 10,後11,後 12,後13,後 14,後15		
						目標の実現に向けて計画ができる。			3	後1			
	態度・志向 性(人間力) 性			志向 態度・志向 性		目標の実現に向けて自らを律して行動できる。			3	後2,後3,後 4,後5,後 6,後7,後 8,後9,後 10,後11,後 12,後13,後 14,後15			
評価割合					<u> </u>	·							
	試馬	試験		演習課題		相互評価	態度	ポートフォリオ	その他	合語	†		
総合評価割合	à 70	70		30		0	0	0	0	100			
基礎的能力	0	0		0		0	0	0	0	0			
専門的能力	70		30		0	0	0	0	10)			
分野横断的能	と力 0		0			0	0	0	0	0			