津山工業高等専	 門学校	開講年度	令和05年度 (2	023年度)	ž	受業科目	電気電			
科目基礎情報		,	,							
<u> </u>	0071			科目区分 専門 / 必修						
	講義	単位の種別と単位数 履修単位: 1								
開設学科		4(電気電子シスラ	テム系)	対象学年 3						
開設期	前期		•	週時間数 2						
教科書/教材	教科書:阿部	『武雄,村山 実	『電気・電子計測	(第3版)」(森北出版)						
担当教員	中村 直人									
到達目標										
学習目的:電気電子計》	側の基礎を理解	解し,計測に関係	なする計算ができる。	ようになるこ	とが本科目	目の目的で	ある。			
1. 直流, 交流の電圧, 2. 交流ブリッジの計 3. 直流, 交流の電力, 4. 電気量以外の測定 5. ディジタルオシロン	電力量の測定 (機械,温度, 関連するAD変	ミ方法か説明でき 光,磁気量の電 E換,DA変換に	る。 『気量への変換)に7 『ついて理解し,計算	ついて説明で 算できる。	ごきる。					
ルーブリック										
	優		良		可			不可		
評価項目1	複雑な匠 ,電流, 測定法を る	複雑な回路における電圧 、電流、インピーダンスの 測定法を理解し、計算でき る			・ インピ・ 理解し, 計算が	−ダンスの 基本的な できる.	測定法を 測定法の	左記に達していない。		
評価項目2	複雑なる ができる	を流ブリッジの計 る。	ができる。	を流ブリッジの計算 る。		交流ブリッジの計算見本を 見ながら,計算ができる。		左記に達していない。		
評価項目3	直流, 3の測定が	を流の電力, 電力 方法が説明できる	単相の有効電 , 皮相電力, きる。	力,無効電力 力率を説明で	簡単な計算が	簡単な交流電力,電力量の計算ができる.		左記に達していない。		
評価項目4		重類のセンサー <i>の</i> 説明できる.)仕 1種類のセン 仕組みを説明		- いて, !	磁気量などの測定方法について, 見本回路をみながら仕組みを説明できる.		左記に達していない。		
評価項目5	A D変換 ック線図	換, DA変換のご 図が描ける.	ブロ A D変換,D ができる。	A変換の計算	^Ŧ のブロ [,]	A D変換, D A 変換の見本 のブロック図を見ながら ,変換の説明ができる。		左記に達していない。		
評価項目6	デジタル 仕組みを	レオシロスコーフ E説明できる.	プログラップ デジタルオシー 使い方が説明 電圧が読み取	でき,周期ヤ	゛゚゚゚゚゚゚゚゙゚゚゚゙゚゚゙゚゚゙゙゙゙゙゚゚゚゙゙゙゚゚゚゙゙゙゙゙゚゚゙゙゚゚゙゚゚゙゚゚゙゚゚゙゚゚゚゚	デジタルオシロスコープの ブロック図を使いながら説 明できる。		左記に達していない。		
学科の到達目標項目	目との関係									
	一般・専門の	別・学習の分野	3:専門:電気・電	7						
	 基礎とかる学	华問分野:工学 <i>/</i>	′丁学基礎							
1 817 215										
概要	学習教育目標との関連:本科目は総合理工学科の学習教育目標「③基盤となる専門性の深化」のための科目である。 授業の概要:誤差,数値の取り扱いなど計測の基本事項から入り,電気電子計測の基本である指示計器の原理,構造に ついて学ぶ。									
	授業の方法: , 理解が深ま じて理解を深	板書を中心に授 るよう演習やレ められるよう配	業を行うが, 日常学が、日常学が、 でポートを課す。基礎 にはなる。	生活で経験す きとなる電気	る電気製品 磁気学,電	温等との関う 国気回路に1	車に注意し ついても計	ながら授業を進める。また 測原理や応用面の説明を追		

授業の進め方・方法

成績評価方法:2回の定期試験の結果をそれぞれ同等に評価する(70%)。小テストの成績,レポートの成績,演習で評価する(30%)。 の評価する(30%)。 成績が60点未満のものに対して,授業態度や出席状況が良好であれば再試験を実施することがある。再試験を行う場合には,最終成績の上限を60点として定期試験の結果と読み替える。

履修上の注意:本科目は必履修科目であり,学年の課程修了のために、本科目履修(欠課時間数が所定授業時間数の3分の1以下)が必須である。。

注意点

履修のアドバイス:事前の準備学習として教科書を一読してほしい。電気回路 I , 電磁気学 I , デジタル工学などの授業と関連があり, これらの内容で理解できることがほとんどである。教科書で分からない箇所があれば, 上述の授業を復習することで理解が深まる。特に交流電気回路の基礎(複素数, フェーザ図, 電力計算法)の理解が重要である。

基礎科目:総合理工基礎(1年),電気電子計測I(2)

関連科目:電気回路 I (3年),電気磁気学 I (3),デジタル工学(3)

授業の属性・履修上の区分

□ ICT 利用 ☑ 遠隔授業対応 □ 実務経験のある教員による授業 □ アクティブラーニング

必履修

巡	₩:	≣ +i	雨
ľΦ	未	7 I I	Ш

授業計画								
		週	授業内容	週ごとの到達目標				
		1週	ガイダンス,概説	それぞれ以下の内容について理解する				
前期 1ctO	2週	直流回路における電圧,電流測定方法	電位差計,微小電流・電圧測定					
前期	1stQ	3週	交流回路における電圧, 電流測定方法	ホール素子,ロゴスキーコイル				
		4週	直流,交流の電力,電力量の測定方法,抵抗測定方法	単層電力, 4端子法				

		5週		抵抗測定方法, 交流ブリッジによるインピーダンス測定				ホイーストンブリッジ、 毎年降下注 <i>グ</i> ブルブリッジ				
		6週		佐				電圧降下法, タフルブリッシ法 交流ブリッジ				
7週			前期中間試験				2000					
		8週	<u>l</u>	前期中間試験の返却と解答解説								
		9週	園 磁		磁気量の測定方法			磁針計, サーチコイル				
		11週 ラ 12週 ラ		鉄損測定, 周波数・位相の測定			エプスタイン法					
				デジタ	タル計測器にま	SけるAD変換, D	デジタル化法	デジタル化法				
				デジタル計測器におけるAD変換, DA変換				A D, D A 変換回路				
2	indQ	13ì	13週 デ		デジタルオシロスコープの原理			デジタルオシロスコープ サンプリング定理				
		14ì			デジタルオシロスコープによる計測方法			量子化検討, デジタル電力計				
		15ì			前期末試験							
		16週		前期末試験の返却と解答解説								
	アカリキ	-그		学習	内容と到達					1		
分類	1		分野			学習内容の到達目標				到達レベル	授業週	
						計測方法の分類(偏位法/零位法、直接測定/間接測定、アナログ 計測/ディジタル計測)を説明できる。			"ナログ	4		
						精度と誤差を理解し 処理が行える。	計測値の	4				
						SI単位系における基	る。	4				
						計測標準とトレーサビリティの関係について説明できる。				4		
		市	電気・電子 系分野	赤フ		指示計器について、その動作原理を理解し、電圧・電流測定に係用する方法を説明できる。				4		
専門的能力	分野別の 門工学	ノ守			[倍率器・分流器を用いた電圧・電流の測定範囲の拡大手法について説明できる。				4		
						A/D変換を用いたディジタル計器の原理について説明できる。				4		
						電圧降下法による抵抗測定の原理を説明できる。				4		
						ブリッジ回路を用いたインピーダンスの測定原理を説明できる。				4		
						有効電力、無効電力、力率の測定原理とその方法を説明できる。				4		
						電力量の測定原理を説明できる。				4		
オシロスコープの動作原理を説							動作原理を説明で	できる。 4				
評価割合				-			1					
試験		発表		相互評価	自己評価	課題	小テスト					
総合評価割合 70			0		0	0	30	0	0)		
基礎的能力 0		0		0 0		0	0					
専門的能力 70			0		0	0	30	0	100	J		
分野横断的能力 0		0		0	0	0	0	0				