津山	工業高等	事門学 /	交 開講年度 令	 和05年度 (2	 	拇		微分積	:		
科目基礎]] 	又 刑两牛/又 17/	四03十皮 (2	.023平/支)	13	(来)11日		1/) Ц		
科目番号	I I I T IX	0080			科目区分			加久			
授業形態		講義		村日区分 単位の種別と単位数		一般 / 必修 履修単位: 2					
				対象学年		3					
開設期通年				週時間数		2					
教科書/教林	 オ	+			1		1-				
担当教員			俊輔,富田周 (一般)	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>						
到達目標	[,,								
		的な問題			 算技術を級数	2 変数関	数の微分				
到達目標: 1.いろい 2.偏微分 3.重積分 4.2変数	ろな関数を の概念を理 の概念を理 関数の置換	べき級数 解し, 基 解し, 基	に展開できる。 基本的な2変数関数の極値や 基本的な立体の体積を求める 記念を理解し,基本的な2変	P曲面の接平面の ることができる。	の方程式を求め	ることが	できる。				
ルーブリ	ック	1.				1			1		
		優		良		可	<u> </u>		不可		
評価項目1			数をテーラー展開することができる。	基本的な関数 , 2次近似を できる。 基本 クローリン限	求めることが	基本的な関数の1次近似 ,2次近似を求めることが できる。			基本的な関数の1次近似 ,2次近似を求めることが 十分に出来ない。		
評価項目2		*	にないを用いて関数の極値 で求める ことができる。更 「条件付き極値, 包絡線を でいることができる。		の極値を求め る。 包絡線を 出来る。	基本的な関数の極値を求め ることができる。		直を求め	基本的な関数の極値を求め ることが十分にできない。		
評価項目3			直積分の計算がで きる。積 分順序を 交換することがで ぎる。	累次積分法を 的な関数の重 よって求める。	ことができる	基本的な関数の重積分を ,累次積分法によって求め ることができる。		漬分を って求め	累次積分法によって重積分を計算することが十分にできない。		
評価項目4			7コビアンを用いた変数変 傾によっ て重積分を計算す 3ことができる。	極座標変換に れた重積分を でき,極座標 理解できる。	計算すること	極座標変換によって与えられた重積分を計算すること できる。			極座標変換による重積分の計算が不十分である。		
学科の到 教育方法		目との	関係								
概要		基 学 習 野本 授級のの2	一般・専門の別:一般 学習の分野:自然科学系共通・基礎 基礎となる学問分野:数物系科学/数学/基礎解析学 学習教育目標との関連: 本科目は「②確かな基礎科学の知識修得」に相当する科目である。 授業の概要: 級数の概念と関数のべき級数展開を理解することからはじめる。 次と関数のべき級数展開を理解することからはじめる。 (こ2年生で学んだ1変数関数の微分・積分を発展させ,2変数関数の微分(偏微分),及び2変数関数の積分(重積分)について学ぶ。								
授業の進め	方・方法	板ま、成原さ前た必要を、、評しる期に必要がある。	授業の方法: 板書を中心に授業を進め、出来るだけ厳密性に偏ることなく直観的な内容の理解を重視する。また、その理解をより深めるために演習の時間を多くするよう配慮する。 成績評価方法: 原則、4回の定期試験の点数から算出される点(50点)と演習問題、レポート課題、授業への取り組み方などから算出される平常点(50点)の合計で評価する。 前期期末段階、後期末段階の成績点が60点未満の者で、出席状況や授業態度が良好であると認められる場合、追試験またはレポート課題を実施することがある。 (必要ならば、前期期末と後期期末のそれぞれで実施する。) ただし、追試験またはレポート課題に合格した者の成績点は60点とする。								
注意点		学 履事 基 関 受講義 関 受講義	履修上の注意: 学年の課程修了のために、本科目履修(欠課時間数が所定授業時間数の3分の1以下)が必須である。 履修のアドバイス: 事前に行う準備学習として、2年生までの数学(特に 微分,積分)を復習しておくこと。 基礎科目:基礎数学(1年),基礎数学演習(1),微分積分 I(2),基礎線形代数(2) 関連科目:応用数学 I, II(4年) 受講上のアドバイス: 講義内容をよく理解し、自分で問題を解くことが重要である。自力で解法を見出すことを大切にしてほしい。 遅刻について、授業に大幅に遅れた場合は欠課として扱うこともある。								
授業の属		上の区	分		I						
	ィブラーニ	ング	□ ICT 利用		☑ 遠隔授業対	応		□ 実	務経験のある教員による授業		
必履修											
授業計画											
		週	授業内容			の到達目標					
前期	1stQ	1週	前期ガイダンス,多項式	忧による近似(1)	関数の1次近似式や2次近似			丘似式を求めることができる		
		ļ	1			10					

		2週	夕.百-	ナル トス・テル	. (2)		関数のn次近似式を	 求めるこ	 とができる。	 また、関数の	
		乙坦	多坦	多項式による近似(2)		極値の判定を行うことができる。 不定形を含むいろいろな数列の極限を求めることがで					
		3週	数列の極限				きる。				
		4週	級数			級数の収束・発散を判定することができる。					
		5週	べき級数とマクローリン展開			関数をマクローリン展開することができる。 オイラーの公式を用いた複素数の計算を行うことができる。					
		6週	オイラーの公式								
		7週	2変数関数			簡単な2変数関数のグラフを描くことができる。					
		8週 9週	前期中間試験 前期中間試験の返却と解説、偏導関数			2変数関数の偏導関数を求めることができる。					
		10週	全微分と接平面			接平面の方程式を求			<u>:</u> ටං		
2		11週	合成関数の微分法			合成関数の微分法を用いて、偏導関数を求めることが					
	2540	12週	高次偏導関数			できる。 高次偏道関数を求め	ることが	 「できる。			
	2ndQ	13週	極大・極小			高次偏導関数を求めることができる。 2 変数関数の極大値・極小値を求めることができる。					
		14週	演習								
		15週	前期末試験								
		16週	前期	未試験の返却]と解説			31.7 /	(原) 道朗粉女	出めてマレ	
		1週	後期	後期ガイダンス,陰関数の微分法			陰関数の微分法を用いて、(偏) 導関数を求めることができる。				
		2週	条件付き極値問題				条件付きの極値を求めることができる。				
		3週	包絡線				包絡線の方程式を求めることができる。 2 重積分の定義を理解し、立体の体積を2 重積分を用				
	3rdQ	4週	2重和	債分の定義			2 重慎力の定義を達解し、立体の体質を2 重慎力を用いて表すことができる。				
		5週	2重積分の計算(1)				累次積分を計算することができる。				
		6週	2重和	債分の計算(2)		積分順序を変更などを用いて立体の体積を計算するこ とができる。				
		7週	演習								
後期		8週	後期中	後期中間試験							
		9週	後期末試験の返却と解説、極座標による重積分			る重積分	極座標に変換することによって2重積分を求めることかできる。				
		10週	変数変換と重積分				一般の変数変換を用いて、2重積分を計算することができる。				
		11週	広義積分				広義積分を計算することができる。				
	4thQ	12週	2重積分のいろいろな応用(1)				曲面の面積を求めることができる。				
		13週	2重積分のいろいろな応用(2) 演習 後期末試験				図形の重心を求めることができる。				
		14週									
		16週 後期末試験の返却と解説									
モデルニ]アカリ=	キュラムの	D学習	内容と到達	達目標						
分類		分野		学習内容	学習内容の到達目標				到達レベル		
				数学	不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求め			3	前3		
					無限寺上級数寺の間車な級数の収集・発取を調べ、その相を求めることができる。			3	前4		
					2変数関数の定義域を理解し、不等式やグラフで表すことができる。			3	前7		
					合成関数の偏微分法を利用して、偏導関数を求めることができる			ができる	3	前9,前 10,前11	
					。 簡単な関数について、2次までの偏導関数を求めることができる			3	前12		
	- 1	****			。 偏導関数を用いて、基本的な2変数関数の極値を求めることがで			ことがで	3	前13	
基礎的能力	」 数学	数学			きる。 2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。 極応煙に変換することによって2重積分を求めることができる。			3	後4,後5		
								3	後9		
					極座標に変換することによって2重積分を求めることができる。 2重積分を用いて、簡単な立体の体積を求めることができる。			3	後6		
					簡単な1変数関数の局所的な1次近似式を求めることができる。				3	前1,前2	
					1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。			3	前5		
					オイラーの公式を用いて、複素数変数の指数関数の簡単な計算が				3	前6	
評価割合	 }				できる。				<u> </u>		
ローには、日本の	4		試	 験		その他		 合計			
総合評価割合 50						50	100				
基礎的能力 50)		50	100				
				0 0		1	0				
小野構脈的	的能力		0			0		0			