┍╾╾	一类 古经	市田学林	5 問護左帝 <u>今</u> 1004左帝 //	2022年度)						
		専門学校	₹ │ 開講年度 │令和04年度 (2	2022年度)	授業科目 第	無機化学基礎				
科目基礎	削有较	44420	10	NOE A	±=== / ≥/#	,				
¥日番号		1412B1	10	科目区分	専門 / 必修					
受業形態		授業	7	単位の種別と単位		I				
朝設学科		化学コー	- 人	対象学年	2					
制設期	++	後期	なみないみ(な み224)	週時間数 2						
效科書/教 □当教員	M	鄭涛	等学校化学(第一学習社)							
23 教員 別 達 目標	<u> </u>	剝)荷								
.結晶構造 .物質のヨ .気体の性 .様々の溶	きの種類とる 三態を比較し 主質を習得す 容液の性質を	ノ、それぞれ する。一定輩	寺徴について習得する。結晶における構 1の特徴を習得する。物質の状態とその 量の気体の体積・圧力・温度が気体定数 物質が溶媒に溶解するしくみと溶解度	変化とエネルギーと との関係を習得する	との関係を習得する	5.				
レーブリ	<u> </u>									
			理想的な到達レベルの目安	標準的な到達レベ		未到達レベルの目安				
平価項目2			化学結合や結晶における構成粒子 の配列の仕方を全て説明すること ができ、気結晶格子の密度などに 関する計算が全てができる。	化学結合や結晶に の配列の仕方を説 き、気結晶格子の る計算が7割がで	明することがで 密度などに関す きる。	化学結合や結晶における構成粒- の配列の仕方を説明することが きない。気結晶格子の密度など 関する計算ができない。				
			物質の状態とその変化をエネルギーや構成粒子の挙動を用いて全て説明することができ、蒸気圧などに関する計算が全てができる。	物質の状態とその ーや構成粒子の挙 することができ、 する計算が7割が	動を用いて説明 蒸気圧などに関 できる。	物質の状態とその変化をエネルーや構成粒子の挙動を用いて説明することができない。蒸気圧ないに関する計算ができない。				
			気体の体積、圧力、温度の関係を 全て説明することができ、気体の 圧力や分子量などに関する計算が 全てができる。	気体の体積、圧力 説明することがで や分子量などに関 ができる。	き、気体の圧力	気体の体積、圧力、温度の関係 説明することができない。気体 圧力や分子量などに関する計算 できない。				
			溶解の仕組みや溶液の性質を全て 説明することができ、溶液の濃度 などに関する計算が全てができる 。	溶解の仕組みや溶することができ、 に関する計算が7	溶液の濃度など	溶解の仕組みや溶液の性質を説明することができない。溶液の濃度などに関する計算ができない。				
学科の至	」達目標項	頁目との 関		•						
学習・教育	到達度目標	票 D-1								
教育方法	等									
既要		程への 位置付に	6のスタートする大学課程の専門分野は,高等学校化学が土台になっている。本講義は高校範囲を含めた大学 渡し的な科目として ており,化学を学ぶ者の「基礎」および「土台」であることを意識して,2年次においてしっかりと化学の基値 けてもらう。							
X	か方・方法	授業計画数回の/	画の順序にほぼ沿って授業を進めていく トテストを行う。	。 また、理解を深る	めるために演習課題	題のレポートの提出,授業期間中(
主意点										
		多上の区分)			T				
」 <i>アク</i> テ	ィブラーニ	ング	☑ ICT 利用	☑ 遠隔授業対応		☑ 実務経験のある教員による授				
受業計画	<u> </u>									
		週	授業内容	ì	週ごとの到達目標					
後期	3rdQ	1週	化学結合と結晶の種類	<u></u>	結晶の種類と特徴を	を説明できる。				
		2週	金属結晶の構造	は結晶の構造		面心立方格子などの格子の特徴と密度などの計算が きる。				
		3週	イオン結晶、共有結合の結晶の構造	-	イオン結晶、共有結合の結晶の構造につてい説は る。					
		4週	分子間力と分子結晶	-	ファンデルワールスカ、静電的引力、水素結合なと ついて説明できる。					
		5週	物質の三態とその変化		物質の状態変化と熱の出入りについて理解し、熱量計算ができる。					
		6週	気体分子の熱運動と圧力、飽和蒸気圧		大気圧と大気圧の測定方法を理解できる。状態図 気圧曲線を理解できる。					
		7週	物質の融点・沸点と化学結合		物質の沸点や融点を分子間力や化学結合と関連 理解できる。					
		8週	後期中間試験							
		9週	気体の体積変化		ボイル・シャルルの法則を理解でき、気体の体積 力の計算ができる。					

10週

11週

12週

13週

14週

4thQ

気体の状態方程式

理想気体と実在気体

溶解と溶液

気体の溶解度

稀薄溶液の性質

気体定数と気体の状態方程式を理解し、分子量の計算をできる。ドルトンの分圧の法則を理解し、混合気体の平均分子量などを計算できる。

物質が溶媒に溶解する仕組みを理解し、固体の溶解度 や結晶水に関する計算ができる。

ヘンリーの法則を理解し、気体の溶解度に関する計算 ができる。

蒸気圧降下、沸点上昇などの性質を理解し、これらの 性質を利用した分子量に関する計算ができる。

理想気体と実在気体の違いについて説明できる。

		15ì	15週 コロ-					コロイドの定義、コロイド溶液の生成とその特性について説明できる。					
		16ì	周	後期期 答案返					いて就明でき	ခ.			
モデルコス	アカリキ	F.J.:	ラムの:	学習	内容と到達	上 日標							
分類 分野					学習内容						到達レ	ベル	授業週
						主量子数、方位量子数、磁気量子数について説明できる。					4		
専門的能力						電子殻、電子軌道、電子軌道の形を説明できる。					4		
						パウリの排他原理、軌道のエネルギー準位、フントの規則から電子の配置を示すことができる。					4		
						価電子について理解し、希ガス構造やイオンの生成について説明 できる。					4		
		D専	化学・生物 系分野			元素の周期律を理解し、典型元素や遷移元素の一般的な性質を説明できる。					4		
	分野別の					イオン化エネルギー、電子親和力、電気陰性度について説明できる。					4		
				生物	無機化学	イオン結	イオン結合と共有結合について説明できる。						
	门工子		**分野	EJ	,	基本的な化学結合の表し方として、電子配置をルイス構造で示すことができる。					4		
						金属結合の形成について理解できる。					4		
						代表的な分子に関して、原子価結合法(VB法)や分子軌道法 (MO法)から共有結合を説明できる。					4		
						電子配置から混成軌道の形成について説明することができる。					4		
						結晶の充填構造・充填率・イオン半径比など基本的な計算ができる。					4		
						配位結合の形成について説明できる。					4		
						水素結合について説明できる。					4		
評価割合													
		定期試験		小テスト		レポート・課題	発表		その他	合計			
総合評価割合		70		0		0	0		30	100			
基礎的能力		60		0		0	0		20	80			
専門的能力		10		0		0	0		10	20			
分野横断的能力		0		0		0	0		0	0			