高知	 N工業高等		開講年度	令和04年度(2022年度)	授業科目	確率・統計解析		
科目基础		<u> </u>	או דושטיון	1-14011/2(, , , , , , , , , ,	1/00-1/31 M1		
科目番号		12022			科目区分	専門 / 必	岭		
授業形態					1				
投票形態 開設学科			^{製色} ダセキュリティコース	,	対象学年	位の種別と単位数 履修単位: 1 象学年 3			
開設当時		後期	x ニイユンテイ コーノ	`	」 別 歌 子 中	2			
用設期 教科書/孝					1				
担当教員				、门、者: 屿田止州	• 門部具人、発行:	《人、発行:果尔化子问人			
		山田 隆	打						
到達目	_								
めには、 検定を行	確率・統計はない、線形	の応用が不可	日々、膨大なデータ: 可欠である。本科目: 築できるようになる:	では、実践を通して	きされている。それ <i>ら</i> 、各種データに表れ	らのデータから有 つれる確率分布を	明日は情報を抽出し、利用していくた 理解し、重要な統計量の推定、仮説		
ルーブ	リック								
			理想的な到達レ	ベルの目安	標準的な到達レベ	いの目安	未到達レベルの目安		
各種確率	分布		を応用できる。			に用いられる各]できる。	種確率分布を説明できない。		
推定と検	定			ができる。 明できる。		「に用いられる、 こと仮説検定を説	実際のデータ解析に用いられる、 各種統計量の推定と仮説検定を説 明できない。		
回帰と線	形モデル		実際のデータを 帰および線形モ とができる。	帰および線形モデル構築を行うこ 直線回帰ま		「に用いられる、 『形モデル構築を 	実際のデータ解析に用いられる、 直線回帰および線形モデル構築を 説明できない。		
学科の	到達目標工	項目との関	目係						
学習・教	育到達度目	標 (C)							
教育方法	 法等	-							
概要	- · · · · ·	行う。					た実際のデータ解析実習を並行して		
授業の進	め方・方法	数学的四天行	内容を講義によって5 いながら、大規模なき	里解するとともに、 データ解析について	広く使われている総定時のに対している	統計処理ソフトウ ・	フェアであるRを用いて実際のデータ処		
注意点	冨性 。	事前学習 した課題 【履修」 この科目	頭を提出すること。 Lの注意】 目を履修するにあたり は、受講前に復習し	つ、基礎的な数学並	びにプログラミング		また、事後学習として授業内で指示 まれる。これらを十分に理解してい		
	<u> 禹任・/復1</u> ティブラー:		」 □ ICT 利用		□ 遠隔授業対応		□ 実務経験のある教員による授業		
授業計	画								
		週	授業内容		j	週ごとの到達目標	声		
		1週	統計・確率の基礎			確率論に基づいた統計的手法の一般的な流れ 理解する。			
		2週		 ェアRの基本的な使	1.75	本科目で使用する統計処理ソフトウェアRの基本 使い方を実践によって学ぶ。			
		3週	重要な確率分布		-	一様分布、二項分布、正規分布などの代表的な 布について学ぶ。			
		4週	母集団と標本(1))	1	母集団から標本を	を抽出する方法について学ぶ。		
	3rdQ	5週	母集団と標本(2))		母集団統計量と標本統計量の違いについて理解			
		6週	大数の法則と中心		;	大数の法則と中心極限定理を実際のデータ解析 て理解する。			
後期		7週	統計的推定		; :	標本統計量から母集団統計量を推定する方法に 学ぶ。			
		8週	相関		1	多変数データ間の相関について学び、各種相関 計算ができるようになる。			
	4thQ	9週	仮説検定の基礎	対験定の基礎			こよって仮説検定の方法を学ぶ。		
		10週	回帰(1)]帰(1)		きる。	いての自己回帰直線を求めることがて		
		11週	回帰(2)			2変数データの回帰直線について、有意性検定がようになる。			
		12週	t検定(1)	検定(1)		検定の方法を学			
		13週	t検定(2)		j	対応のあるデータ、対応のないデータについて 適した検定方法を学ぶ。			
		14週	F検定(1)	検定 (1)			て学び、F検定ができるようになる。		
		15週	F検定(2)		V	Welchのt検定ができるようになる。			
		16週							
モデル	コアカリ=	キュラムの	D学習内容と到達	桂目標					
分類	-	分野	学習内容	学習内容の到達目	 標		到達レベル 授業週		

		1			
				整式の加減乗除の計算や、式の展開ができる。	3
				因数定理等を利用して、4次までの簡単な整式の因数分解ができ る。	3
				分数式の加減乗除の計算ができる。	3
				実数・絶対値の意味を理解し、絶対値の簡単な計算ができる。	3
				平方根の基本的な計算ができる(分母の有理化も含む)。	3
				複素数の相等を理解し、その加減乗除の計算ができる。	3
				解の公式等を利用して、2次方程式を解くことができる。	3
				因数定理等を利用して、基本的な高次方程式を解くことができる	
				。	3
				簡単な連立方程式を解くことができる。	3
				無理方程式・分数方程式を解くことができる。	3
				1次不等式や2次不等式を解くことができる。	3
				恒等式と方程式の違いを区別できる。	3
				2次関数の性質を理解し、グラフをかくことができ、最大値・最	3
				小値を求めることができる。	
				分数関数や無理関数の性質を理解し、グラフをかくことができる	3
				<u>°</u> 簡単な場合について、関数の逆関数を求め、そのグラフをかくこ	
				とができる。	3
				累乗根の意味を理解し、指数法則を拡張し、計算に利用すること	3
				ができる。	
				指数関数の性質を理解し、グラフをかくことができる。	3
				指数関数を含む簡単な方程式を解くことができる。	3
				対数の意味を理解し、対数を利用した計算ができる。	3
				対数関数の性質を理解し、グラフをかくことができる。	3
				対数関数を含む簡単な方程式を解くことができる。	3
				角を弧度法で表現することができる。	3
				三角関数の性質を理解し、グラフをかくことができる。	3
				加法定理および加法定理から導出される公式等を使うことができ る。	3
				三角関数を含む簡単な方程式を解くことができる。	3
				三角比を理解し、簡単な場合について、三角比を求めることがで	
				きる。	3
基礎的能力	数学	数学	数学	一般角の三角関数の値を求めることができる。	3
				2点間の距離を求めることができる。	3
				内分点の座標を求めることができる。	3
				2つの直線の平行・垂直条件を利用して、直線の方程式を求める	3
				ことができる。 簡単な場合について、円の方程式を求めることができる。	2
				放物線、楕円、双曲線の図形的な性質の違いを区別できる。	
					3
					3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。	3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数える	3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。	3 3 4
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。	3 3 4 4
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。	3 3 4 4 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。	3 3 4 4 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。	3 3 4 4 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求め	3 3 4 4 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。	3 3 4 4 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求め	3 3 4 4 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して	3 3 4 4 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。	3 3 4 4 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すごとができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。	3 3 4 4 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 間題を解くために、ベクトルの平行・垂直条件を利用することが	3 3 4 4 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すごとができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。	3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 回路を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。	3 3 4 4 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積	3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 間題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。	3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積	3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 回題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。	3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 行列式の定義および性質を理解し、基本的な行列式の値を求めることができる。	3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 行列式の定義および性質を理解し、基本的な行列式の値を求めることができる。 線形変換の定義を理解し、線形変換を表す行列を求めることがで	3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 だ行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 総形変換の定義を理解し、線形変換を表す行列を求めることができる。	3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 だ行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 線形変換の定義を理解し、線形変換を表す行列を求めることができる。 線形変換の定義を理解し、線形変換を表す行列を求めることができる。 合成変換や逆変換を表す行列を求めることができる。	3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 簡単な場合について、順列と組合せの計算ができる。 等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 べクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 だ行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 総形変換の定義を理解し、線形変換を表す行列を求めることができる。	3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

				独立試行の確率、余事象の確率、確率の加法定理、排反事象の確 率を理解し、簡単な場合について、確率を求めることができる。				4	
				条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単 な場合について確率を求めることができる。				4	
				1次元のデータを整理して、平均・分散・標準偏差を求めることができる。				4	
				2次元のデータを整理して散布図を作成し、相関係数・回帰直線 を求めることができる。				4	
				簡単な1変数関数の局所的な1次近似式を求めることができる。				3	
				1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。				3	
				オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。				3	
)専 情報系分野	プログラミ	代入や演算子の概念を理解し、式を記述できる。				3	
				プロシージャ(または、関数、サブルーチンなど)の概念を理解し、これらを含むプログラムを記述できる。				3	
				変数の概念を説明できる。				3	
				データ型の概念を説明できる。				3	
				制御構造の概念を理解し、条件分岐を記述できる。				3	
 専門的能力	分野別の専 門工学			制御構造の概念を理解し、反復処理を記述できる。				3	
(会) 16.3BC/2	門工学			与えられた問題に対して、それを解決するためのソースプログラムを記述できる。				3	
				与えられたソースプログラムを解析し、プログラムの動作を予測 することができる。				3	
				コンピュータ上での数値の表現方法が誤差に関係することを説明できる。				3	
			情報理論	コンピュータ上で数値計算を行う際に発生する誤差の影響を説明できる。				3	
評価割合									
試験		大験 発表		相互評価	態度	ポートフォリオ	課題	合語	it
総合評価割合	60	0		0	0	0	40	10	0
基礎的能力	40	0		0	0	0	20	60	
専門的能力	10	0		0	0	0	10	20	
分野横断的能	的 10	0		0	0	0	10	20	