Tsuyama College Y		Year	2020		Course Title	Robot Control		
Course Information								
Course Code	0142			Course Category	Specializ	Specialized / Elective		
Class Format	Lecture			Credits	Academ	Academic Credit: 2		
Department	Department of Integrated Science and Technology Communication and Informations System Program			Student Grade	5th	5th		
Term	First Semester			Classes per Week	2	2		
Textbook and/or Teaching Materials	Textbooks: "Basic Theory of Control -Classical Control and Modern Control-"(Corona publishing)							
Instructor	INOUE Hiroyuki							
Course Objective	es							

Learning purposes:

To understand the concept of state feedback control, which is the basic method of modern control theory, and acquire the ability to design control systems.

Course Objectives:

- To express the control system using the state equation and the output equation.
 To discriminate controllability and observability.
 To discriminate stability or instability using stability criterion.
 To explain the concept of state feedback control.

Rubric

xcellent	Good	Acceptable	Not acceptable
quation and the output	system using the state equation and the output	equation and the output	Not reached the left.
udge controllability and	controllability and	controllability or	Not reached the left.
adge stability or	To discriminate stability or instability using two stability criterions.	or instability using one	Not reached the left.
o design state feedback ontrol.	To explain the concept of state feedback control.	purpose of state	Not reached the left.
Cyccu Cult Cunt	o express the control stem using the state quation and the output quation based on a umerical expression. o understand and to dge controllability and oservability. o understand and to dge stability or stability using two ability criterions.	o express the control stem using the state quation and the output quation based on a umerical expression. o understand and to dge controllability and observability. o understand and to dge stability or stability using two ability criterions. o design state feedback	o express the control stem using the state quation and the output quation based on a umerical expression. o understand and to dge controllability and observability. o understand and to dge stability or stability using two ability criterions. To express the control system using the state equation and the output equation. To discriminate controllability and observability. To discriminate stability or observability or instability using two stability criterions. To discriminate controllability or observability. To discriminate stability or instability using two stability criterions.

Assigned Department Objectives

I 1 ·	
Loachin	i Mathad
Teachin	ม เขอแบบน

General or Specialized: Specialized

Field of learning: Energy / Measurement and Control

Required, Elective, etc.: Elective must complete subjects

Foundational academic disciplines: Engineering / Mechanical Engineering / Mechanical Mechanics / Control

Outline Relationship with Educational Objectives: This class is equivalent to "(3) Acquire deep foundation knowledge of the major subject area"

Relationship with JABEE programs: The main goals of learning / education in this class are "(A), A-2

In the robot control, to learn about the stabilization of control systems and the improvement of response based on modern control theory. To learn controllability and observability based on the state equation. To learn the discrimination law of stability or instability.

Course method:

Modern control theory is based on matrix operations, linear algebra is reviewed first, and then control

methods based on the state equation of dynamic systems are explained in detail.

Grade evaluation method: Exams (70%) + Mini tests and portfolio (30%).

A grade of less than 60 points may be required to retake the exam, and the average of the regular exam and the re-exam will be re-calculated for the exam, and if the grade exceeds 60 points, the student will receive a score of 60 points.

Precautions on the enrollment:

This is a "class that requires study outside of class hours". Classes are offered for 15 hours per credit, but 30 credit hours are required in addition to this. Follow the instructions of your instructor for these studies.

Modern control theory uses matrix calculation, so it should be reviewed thoroughly. Foundational subjects: Control Engineering (4th year)
Related subjects: Sensor Engineering (5th year)

Attendance advice: If you are late for the start time, you will be treated as absent after 25 minutes.

Course Plan

Style

Notice

			Theme	Goals		
1st Semeste 1st Qui	1		Guidance, Modern control theory	Express control system using block diagram		
	Quarter	2nd		Express control system using state equation and output equation		

		1				1			
		3rd	Transfer function				Express transfer function from transfer function		
		4th	Stability and stability criterion			Discriminate s system using	Discriminate stability and instability of the control system using the stability criterion.		
		5th	Controllability and	Controllability and observability			Discriminate controllability and observability of the control system		
		6th	Controllable cano	controllable canonical form			Transform the system into a controllable canonical form.		
		7th	Observable canon	ical form		Transform the form.	Transform the system into a observable canonical		
			1st semester mid	-term exam					
			Return and comm	nentary of exam	answers				
		10th	Series compensat	or		Design series	Design series compensator		
		11th	Observer				Design observer		
	2nd Quarter	12th	Iiternal model pri	nciple		Explain the concept and components of feedback control.			
		13th	Proportional control			Explain steady-state characteristic of control system.			
		14th	Integral control	tegral control st semester final exam			Design PI control system.		
		15th	1st semester fina						
		16th	Return and comm	turn and commentary of exam					
Evaluati	ion Me	thod and	Weight (%)						
		Examination	Presentation	Mutual Evaluations between students	Behavior	Portfolio	Mini test	Total	
Subtotal		70	0	0	0	20	10	100	
Basic Proficienc			0	0	0	0	0	0	
Specialized 70 Proficiency		0	0	0	20	10	100		
Cross Area Proficiency 0		0	0	0	0	0	0		