鈴居	电工業高等	等專門学校	開講年度 令和02年度	(2020年度)	授業科目	無機化学 I						
科目基礎	^{礎情報}											
科目番号		0048		科目区分	専門 / 🌡							
授業形態		授業		単位の種別と単位	拉数 履修単位: 2							
開設学科		生物応用	引化学科	対象学年	3							
開設期		通年		週時間数		2						
教科書/教	牧材	, 共訳	現代の無機化字 台原 眞・开手 『 (広川書店),無機化学 斉藤著 (培 ≷著(講談社サイエンティフィク)	ポ・栗原寛人 (二共 風館),基礎無機化学	出版)参考書 浜口訳 (東	:大学の化学(Ⅰ, Ⅱ) 塩見,吉野,頭京化学同人),絶対わかる無機化学 齋						
旦当教員		下野 晃										
到達目												
子の構	造,化学結	合,固体化	学, 錯体化学, 生物無機化学, 水素と	水素化合物, s ∼ f フ	「ロック元素に	関する基礎理論を理解している.						
レーブ	リック											
			理想的な到達レベルの目安	標準的な到達レベ		未到達レベルの目安 基 原子の構造, 化学結合に関する基						
価項目	1		原子の構造, 化学結合に関する応用問題ができる.	用問題ができる.								
価項目			固体化学,錯体,生物無機化学に関する応用問題ができる. 水素と水素化合物に関する応用問	関する基礎問題が	できる.	関する基礎問題ができない.						
呼価項目 			水系と水系化合物に関する心用向 題ができる. s ~ f ブロック元素に関する応用	題ができる		題ができない.						
価項目	4		S ~ T ノロック元素に関する心用 問題ができる.	S ~ T ブロック元 問題ができる.	米に戌りる季	□ S ~ 「 ノロック元素に関する基礎 □ 問題ができない.						
学科の	到達目標	項目との関	 関係									
対育方法												
要		2つに分	無機化学 I では理論的なものから各元素の性質までその内容は広いが、この授業では基礎理論と元素・化合物の性質の2つに分けて学習し、原子構造、化学結合、固体・錯体化学についての理解を深めるとともに、水素化合物、s ~fブロク元素の性質や化合物に関連した知識を習得する.									
業の進	め方・方法	・すべて ・授業に ・「授業	この授業内容は,「生物応用化学科」 は講義・演習形式で行う.講義中は,	学習・教育到達目標 集中して聴講する. よこの授業で習得する	(B) <基礎>(こ相当する. に相当するものとする.						
主意点		お 要 く く る く る し る し る し る し る し る し る し る し	成績を上回った場合には、60点を上限としてそれぞれの試験の成績を再試験の成績で置き換えるものとする. な学年末試験結果により単位修得要件を満たせなかった者については,上限を60点とする学年末試験の再試験を課し、を満たした場合60点を上限として単位修得を認める。 位修得要件>学業成績で60点以上を取得すること. らかじめ要求される基礎知識の範囲>本科目は,生物応用化学序論,化学の学習が基礎となる科目である. ボート等> 課題レボートの提出有 考>理解を深めるために講義中に演習問題を行なうことがあるので電卓を持参のこと. の補助的資料としてプリント等を配布し講義内容にくわえることがある. 本科目は4年に履修する無機化学Ⅱおよび									
受業計	面	5年化学	コースで学ぶ無機工業化学に必要な基	一般的内容を多く含む	.こから、 ので, 長期的た	は日はず年に履じずる無機に手ょりる。 注視野を持って授業に臨んでほしい.						
X X 111		週	授業内容	j	型ごとの到達目	標						
		1週	宇宙の原子,同位体と原子量,演習	1	原子構造, 原 説明やこれに関	子量, 同位体, 放射性崩壊についての 連する計算ができる.						
前期		2週	水素原子模型,演習		2.水素原子模型,電子状態について説明やこれに関連する計算ができる.							
	1stQ	3週	電子状態,演習			式について説明ができる.						
		5週	電子状態,演習 原子の結合形式,共有結合,演習	4 百二		Pの結合形式について説明ができる P軌道の重なりと分子軌道について説明ができる						
		6週	混成軌道 演習		- 4.原子軌道の重なりと分子軌道について説明ができる							
		7週	イオン結合、水素結合、演習	5		水素結合,格子エネルギーについて説 する式の導出や計算ができる.						
		8週	課題レポートの作成	ji	産成目標1~5の	9 6 10 9 6 1 月か (さる .)内容の説明や諸量を求めることができることができる。						
		9週	金属結晶,イオン結晶	6	6.金属結晶, イ	RMEと元成することができる。 全属結晶,イオン結晶,共有結晶,分子結晶にご 説明や図示,及びこれに関連する計算ができる.						
		10週	共有結晶,演習,分子結晶	6	金属結晶、イオン結晶、共有結晶、分子結晶につい説明や図示、及びこれに関連する計算ができる.							
		11週	固体中の電子, 演習	7	7.固体中の電子の状態, エネルギーバンドについて 解している.							
	2ndQ	12週	錯体の定義, 錯体命名法		8.錯体の定義や用いられる用語が説明でき, 錯体の命名法を理解している.							
		13週	配位立体化学	9	9.代表的な錯体の配位数や立体構造を把握している.							
		14週	配位立体化学		10.原子価結合理論,静電結晶場理論,配位場理論にいて理解している。							

15週

16週

配位結合,演習

10.原子価結合理論,静電結晶場理論,配位場理論について理解している.

		1逓	1	錯体の	の安定度			11.錯体の安定度定数に 算ができる。	こついて	ご説明やそれの	こ関連する計	
		2逓]	有機金属化合物、錯体の反応				12.代表的な有機金属化合物,錯体の反応や反応機構について理解している.				
		3週		生体内の元素,生体内の金属イオンの動態,酵素運搬 体				13.生体内の元素やその動態について説明やそれに関連する計算ができる。				
	3rdQ	4追			 俞送タンパク	7質, 金属酵素, 演習 14.酸素運搬体, 金属酵素について説る計算ができる.			ついて説明や	それに関連す		
		5週]	水素質	単体,水素化	に合物, 演習 15.水素原子, 単体, およて よびそれに関連する計算が			ー およびか 質がで:	 ×素化合物に [*]	ついて説明お	
		6週	,	711 d			二丰、定羽	16. s ~ f ブロック元素	表の一般	设的性質,化含	合物の性質や	
		0.2	1	J')V)	ンカリ金属元素,アルカリ土類金属元素,演習 		代表的な反応について把握しており、それに関連した計算ができる。 16. s ~ f ブロック元素の一般的性質、化合物の性質や					
		7週	1	pブロ	コック元素単	!体		16.5~1フロック元系の一般的性質、10日初の性質で 代表的な反応について把握しており、それに関連した 計算ができる。				
		8逓	1	中間語	式験			これまで学習した内容を説明し、諸量を求めることができる.				
後期		9週	1	酸化物	勿,演習			16. s ~ f ブロック元素の一般的性質, 化合物の性質や 代表的な反応について把握しており, それに関連した 計算ができる.				
		10)	<u></u>	dブロン族,	コック元素の バナジウム)一般的性質, スカン: 族	ジウム族, チタ	16.s~fブロック元素の一般的性質, 化合物の性代表的な反応について把握しており, それに関連し計算ができる.		合物の性質や に関連した		
	4thQ	11)	週	クロム	金族,銅族,演習			16. s ~ f ブロック元素の一般的性質, 化合物の性質や 代表的な反応について把握しており, それに関連した 計算ができる.				
		123	12週 白金旗		金族,銅族,演習			16. s ~ f ブロック元素の一般的性質, 化合物の性質や 代表的な反応について把握しており, それに関連した 計算ができる.				
		13)	3週 銅族		族			16. s ~ f ブロック元素の一般的性質, 化合物の性質や 代表的な反応について把握しており, それに関連した 計算ができる.				
		14)	14週 亜鉛加		沿族,演習		16. s ~ f ブロック元素の一般的性質, 化合物の性質や 代表的な反応について把握しており, それに関連した 計算ができる.					
		15週 アク:		アクラ	クチノイド元素		16. s ~ f ブロック元素の一般的性質, 化合物の性質や 代表的な反応について把握しており, それに関連した 計算ができる.					
		16週						119470 CC G.				
モデルコ	アカリ=	<u> キュ</u> :	ラムの	学習	内容と到達	主目標						
分類						-			到達レベル	授業週		
						電子殻、電子軌道、電子軌道の形を説明できる。 4						
						価電子について理解し、希ガス構造やイオンの生成について説明できる。			4			
						元素の周期律を理解し、典型元素や遷移元素の一般的な性質を説明できる。			4			
						イオン化エネルギー、電子親和力、電気陰性度について説明できる。			4			
						イオン結合と共有結合について説明できる。				4		
						金属結合の形成について理解できる。 代表的な分子に関して、原子価結合法(VB法)や分子軌道法			4			
						(MO法)から共有結合を説明できる。			4	<u> </u>		
					無機化学	電子配置から混成軌道の形成について説明することができる。			3.	4		
 専門的能力	分野別の	の専	化学・st 系分野	生物		結晶の充填構造・充填率・イオン半径比など基本的な計算ができる。			ができ	4		
	1, 17.7		ハベノリ ± リ	EJ'		©。 配位結合の形成について説明できる。				4		
						水素結合について説明できる。			4			
						錯体化学で使用される用語(中心原子、配位子、キレート、配位		和位	4			
						数など)を説明できる。 錯体の命名法の基本を説明できる。			4			
						配位数と構造について説明できる。			4			
						代表的な錯体の性質(色、磁性等)を説明できる。			4			
						代表的な元素の単体と化合物の性質を説明できる。			-	4		
						放射線の種類と性質を説明できる。				4		
					物理化学	放射性元素の半減期と安定性を説明できる。				4		
						核分裂と核融合のエネルギー利用を説明できる。			4			
評価割合				-			<u> </u>	1				
				試			課題レポート	合				
総合評価割合				_	75 25			10				
配点				75 25			125	10	U			

配点