北九州工業高等専門学校		開講年度	平成30年度 (2	018年度)	授業科目	電力システム工学		
科目基礎情報								
科目番号	0176			科目区分	専門 / 必	修		
授業形態	授業			単位の種別と単位数	效 履修単位	履修単位: 2		
開設学科	電気電子工学科			対象学年	5	5		
開設期	通年			週時間数	2	2		
教科書/教材								
担当教員	田川 晴夫							
副装口槽								

|到達目標|

- 1、電気エネルギーの発生、輸送および利用に用いられる回転機と静止器等の動作原理と構造、それぞれの働きとかかわりについて理解できる。
 2、高度な社会・産業活動を行うために要求される品質の高い電力とは何かを学び、品質維持にいかなる手段が用いられているかを理解する。
 3、電力システムの日常的な稼働により、高度な社会、産業活動と環境保全活動の相克について学び、電気エネルギーと環境問題の関わりについて理解できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
電気エネルギーの発生、輸送および利用に用いられる回転機と静止器等の動作原理と構造、それぞれの働きとかかわりについて理解できる。	発電効率や事故時の潮流・電圧計 算等ができる。	回転機と静止器等の動作原理と構造、それぞれの働きとかかわりについて理解できる。	回転機と静止器等の動作原理と構造、それぞれの働きとかかわりについて理解できない。
高度な社会・産業活動を行うため に要求される品質の高い電力とは 何かを学び、品質維持にいかなる 手段が用いられているかを理解す る。	品質維持に必要な系統の安定度や 保護装置の動作特性などの考え方 が理解できる。	高度な社会・産業活動を行うため に要求される品質の高い電力につ いて理解できる。 品質維持にいかなる手段が用いら れているか理解できる。	高度な社会・産業活動を行うため に要求される品質の高い電力につ いて理解できない。 品質維持にいかなる手段が用いら れているか理解できない。
電力システムの日常的な稼働により、高度な社会、産業活動と環境保全活動の相克について学び、電気エネルギーの環境問題の関わりについて理解できる。	電気エネルギーの環境問題の関わりについて理解し、今後の課題について多方面から考察ができる。	電力システムの日常的な稼働により、高度な社会、産業活動と環境保全活動の相克について理解できる。 電気エネルギーの環境問題の関わりについて理解できる。	電力システムの日常的な稼働により、高度な社会、産業活動と環境保全活動の相克について理解できない。 電気エネルギーの環境問題の関わりについて理解できない。

学科の到達目標項目との関係

教育方法等

概要	現代社会を支えるエネルギーとして電力は極めて重要である。本講義では、電力の発生、変換、輸送および消費につい ての基礎知識及び電力システムの運用の概要について学習する。更に、風力・太陽光発電等の自然エネルギーを利用し た発電方式について理解を深め、また、日本のエネルギー事情及び地球環境問題について知識を得ることを目的とする 。
授業の進め方・方法	教科書に従って講義を行う。授業の一環として年2回程度の火力発電所及び変電所等の施設見学を実施する。
注意点	この科目は電気主任技術者(第二種)免状の認定申請に必要な科目の一つである。

極業計型

授業計	受棄計画								
		週	授業内容	週ごとの到達目標					
		1週	総論	電力系統の構成、電力需要(電気の使われ方)の特徴が説明できる。					
		2週	水力発電	発電方式、水力学、水力発電設備、揚水発電が説明で きる。					
		3週	水力発電	発電方式、水力学、水力発電設備、揚水発電が説明で きる。					
	1stQ	4週	水力発電	発電方式、水力学、水力発電設備、揚水発電が説明で きる。					
		5週	火力発電	熱力学基礎、火力発電設備、環境対策が説明できる。					
		6週	火力発電	熱力学基礎、火力発電設備、環境対策が説明できる。					
前期		7週	火力発電	熱力学基礎、火力発電設備、環境対策が説明できる。					
		8週	原子力発電	原子炉物理入門、原子炉の炉型と構成要素、原子燃料 サイクルが説明できる。					
		9週	原子力発電	原子炉物理入門、原子炉の炉型と構成要素、原子燃料 サイクルが説明できる。					
		10週	原子力発電	原子炉物理入門、原子炉の炉型と構成要素、原子燃料 サイクルが説明できる。					
		11週	原子力発電	原子炉物理入門、原子炉の炉型と構成要素、原子燃料 サイクルが説明できる。					
	2ndO	12週	新エネルギー発電	日本のエネルギー事情、地球環境問題。地熱発電、風力発電、太陽光発電、燃料電池、コージェネレーションが説明できる。					
		13週	新エネルギー発電	日本のエネルギー事情、地球環境問題。地熱発電、風力発電、太陽光発電、燃料電池、コージェネレーションが説明できる。					
		14週	新エネルギー発電	日本のエネルギー事情、地球環境問題。地熱発電、風力発電、太陽光発電、燃料電池、コージェネレーションが説明できる。					
		15週	期末試験						
		16週	期末試験 答案返却、解説						
後期	3rdQ	1週	送電設備	送電設備(架空、地中)が説明できる。					

2週			送電設備			送電設備(架空、地中)が説明できる。					
		3週	送電設備			電気特性(線路定数、等価回路)が説明できる。					
4週			送電設備				電気特性(線路定数、等価回路)が説明できる。				
5週 送電設備			電気特性(線路定数、等価回路)が説明できる。								
6週 送電設備			没備			電力系統の安定度が説明できる。、故障計算ができる 。。					
		7週	送電設備			電力系統の安定度が説明できる。、故障計算ができる。					
	8週 送電設備				電力系統の安定度な	が説明でき	る。、故障	計算ができる			
10週 変電 11週 変電			送電詞	送電設備			電力系統の安定度が説明できる。、故障計算ができる。				
			変電	投備	変電設備(構成機器、結線方式)、保護装置が説明できる。						
			亦重氾備				変電設備(構成機器、結線方式)、保護装置が説明できる。				
			配電記	没備	配電設備(構成機器	、配線方式	式)が説明で	きる。			
	13週			と異常現象	電力系統に発生する故障と異常現象(誘導傷害など)とその対策が説明できる。						
14週			電力系統運用技術			周波数、電圧(調相容量計算を含む)、連系線潮流の制御方式が説明できる。					
		15週	期末記	式験							
		16週	期末記	式験 答案返	却、解説						
モデルコス	アカリキ	ユラムの)学習	内容と到達	目標						
分類		分野		学習内容	学習内容の到達目標				到達レベル	レ 授業週	
					電力システムの構成およびその構成要素について説明できる。				4	前1	
					交流および直流送配電方式について、それぞれの特徴を説明できる。			:説明でき	4	後12	
		分野別の専 門工学 系分野			電力品質の定義およびその維持に必要な手段について知っている。				4	後14	
				·子 電力	電力システムの経済的運用について説明できる。				4	後13	
	公野別で				水力発電の原理について理解し、水力発電の主要設備を説明でき る。				4	前2,前3,前 4	
専門的能力	門工学				火力発電の原理について理解し、火力発電の主要設備を説明できる。				4	前5,前6,前 7	
					原子力発電の原理について理解し、原子力発電の主要設備を説明できる。				4	前8,前9,前 10,前11	
					その他の新エネルギー・再生可能エネルギーを用いた発電の概要 を説明できる。				4	前12,前 13,前14	
					電気エネルギーの発生・輸送・利用と環境問題との関わりにて 、				4	前1,後 10,後11,後 12	
評価割合											
	試験 発表 相互評価 態度			レポート	その他	の他合計					
総合評価割合			0	30	0 100		00				
基礎的能力 0			0		0	0	0	0	0		
専門的能力 70			0		0	0	30	0	10	00	
分野横断的能力 0			0		0 0 0						