福井	‡工業高等	事門学校	開講年度	平成31年度 (2	.019年度)	授業	科目	機能材料	化学		
科目基础	礎情報										
科目番号		0142			科目区分	専	門/選択	ξ			
授業形態		講義			単位の種別と単位	位数 履	修単位:	1			
開設学科		物質工学	*科	対象学年	5						
開設期		後期		週時間数	2						
教科書/教	树	吉田泰彦 平 著	、萩原時彦ら 著 「高分子材料の化学	「高分子材料化学」3 学」 丸善、「分子	三共出版/宮下徳治 忍識化学」築部	3 著 「 浩編著(三	コンパク 共出版)				
担当教員		津田 良弘	Ь								
到達目	標										
源に対し を理解で	て分離機能 きること。	る天然高分子 材料の役割か	や生分解性プラスラグ できること。	チックの役割が理解で	できること。 (4) 分子認識の駆	(3) 動力を理角	高分子材 解し、人コ	材のリサ~ □酵素開発((2) 省エネル イクルに関す こ応用できる	/ギー・省資 る工学的意義 こと。	
ルーブリ	リック				I		_	1	— -		
			理想的な到達レ		標準的な到達レイ				ベルの目安		
評価項目1				対する天然高分子や チックの役割が理 できる。	(1) 環境保全に対する天然高分子や 生分解性プラスチックの役割が理 解できる。			↑(1) 環境保全に対する天然高分子 −生分解性プラスチックの役割が理 − 解できない。			
評価項目	2		(2) 省エネルギ 分離機能材料の 説明ができる。	(2) 省エネルギー・省資源に対して 分離機能材料の役割が理解できる 。			(2) 省エネルギー・省資源に対し 分離機能材料の役割が理解できない。				
評価項目	3		(3) 高分子材料のリサイクルに関する工学的意義を理解でき、説明ができる。。		(3) 高分子材料のリサイクルに関する工学的意義を理解できる。			(3) 高分子材料のリサイクルに関する工学的意義を理解できない。			
				駆動力を理解し、人 用でき、説明がで	(4) 分子認識の駆動力を理解し、人 工酵素開発に応用できる。			、(4) 分子認識の駆動力を理解し、/ 工酵素開発に応用できない。			
学科の	到達目標耳	頁目との関	係								
JABEE JE	В3										
教育方法	法等										
概要		ース・デ 講義し、	デンプンなど天然高タ	ヹラミックス材料とタ ∂子としてなくてはク 系などを理解できる。 する。	ならないものであ	る。講義で	では特に、	環境に優し	しい高分子材	料について	
授業の進	め方・方法	高分子材	沿って講義を進める 料について理解する 認識系の特徴・応	る。省エネルギー・1 る。分子認識化学で(用例を解説する。	当資源、環境を考 は最終的な目標を な	えた生分角 分子の認証	解性高分子 哉に置くの	子とリサイク Dではなく、	クルなど、環 それから次	境に優しい の機能につ	
注意点		環境生産 関連科目 評価方法	システム工学プログ 1:有機材料化学(本	式験で7割、プレゼン				⊆ ∘			
授業計	画										
10//011	7	週	授業内容			週ごとの	到達日標				
		1週		省エネルギー・省資源							
		2週	樹脂による分離			樹脂によ	 る分離に [*]	ついて説明	できること。		
		3週	膜による分離		膜による分離について説明できること。						
	3rdQ	4週	天然高分子・生体	 高分子	天然高分子・生体高分子について説明できること。						
	Siaq	5週	タンパク質・糖類		タンパク質・糖類について説明できること						
		6週	生分解性プラスチ	<u> </u>		生分解性	プラスチ	ックについ	て説明できる	こと。	
		7週	高分子材料のリサー	イクル		高分子材料のリサイクルについ			いて説明でき	ること。	
		8週	中間試験								
後期		9週	試験の返却と解説、	: ************************************			環境にやさしい材料に関するプレゼンテーション用 査が出来ること。			・ション用調	
		10週	プレゼンテーショ	ン		環境にやさしい材料に関するプレゼンテーションが 来ること。			·ションが出		
		11週	生体膜やタンパク質	質での分子認識		生体膜やタンパク質での分子認識に関し説明できること。					
	4thQ	12週	多様なホストゲス	わるカ	多様なホストゲスト系、分子認識に関わる力が説明で きること。						
		13週	協同効果、エンタ	—補償則 ————	協同効果、エンタルピー・エントロピー補償則が説明できること。						
		14週		多重認識、人工酵素		有機ホスト分子、多重認識、人工酵素が説明できること。 後期の学習内容がまとめられること。					
		15週				俊期の字	省内容か	<u> まとめられ</u>	<u>ること。</u>		
		16週	期末試験								
	コアカリ:	キュラムの)学習内容と到遺	至日쁜							
	<u> </u>						到達レベル 授業週				
モデル: _{分類}		分野	学習内容	学習内容の到達目標						授業週	
	クナ田子 日本	分野	学習内容		関して、その構造な			ぎきる。	到達レベル 4	授業週	

				高分子化合物がどのようなものか説明できる。					
				代表的な高分子化合物の種類と、その性質について説明できる。				4	
				高分子の分子量、一次構造から高次構造、および構造から発現す る性質を説明できる。				4	
				高分子の熱的性	4				
				重合反応について説明できる。					
		重縮合・付加重合・重付加・開環重合などの代表的な高分子合成 反応を説明でき、どのような高分子がこの反応によりできている か区別できる。						4	
		ラジカル重合・カチオン重合・アニオン重合の反応を説明できる。							
				ラジカル重合・カチオン重合・アニオン重合の特徴を説明できる 。				4	
			4m +4% / L 225	配位結合の形成について説明できる。				4	
			無機化学	水素結合について説明できる。				4	
評価割合	•		•	•					
	試験	多	 表	相互評価	態度	ポートフォリオ	その他	슫	計
総合評価割合	70	3	0	0	0	0	0	1	00
基礎的能力	0)	0	0	0	0	0	
専門的能力	的能力 70		0	0	0	0	0		00
分野横断的能力 0		0	 	0	0	0	0	0	