鹿児	島工業高		交 開講年度 令和02年度(授業科目	システム工学特論 II	
	<u> </u>	(3 (3) 33)	1000100 1001000 1001	(1228111	> > \	
科目番号 0086				科目区分	専門 / 選		
授業形態	ž.	講義		単位の種別と単位			
開設学科情報工学科		情報工		対象学年 5			
開設期前期		前期		週時間数	前期:2		
教科書/教材 〔教科書〕			なし 〔参考書・補助教材〕 これなら分かる応用数学教室-最小二乗法からウェーブレット			法からウェーブレットまで- 金谷健一	
担当教員	Į	古川 翔	大				
到達目	標						
 最小二乗	法から離散	フーリエ解	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	またその発展とし ⁻	て主軸変換につい		
ルーブ	リック						
			理想的な到達レベルの目安	標準的な到達レヘ	 バルの目安	未到達レベルの目安	
最小二乗法について理解する.			与えられたデータ点のみでなく , 関数やベクトルに関しても最小 二乗法を適用することができる.	与えられたデータ点に対して最小 二乗法を適用することができる.		与えられたデータ点に対して最小 二乗法を適用することができない	
直交関数系について理解する.			右に加え、代表的な直交関数について説明することができる.	直交関数系についてその概要が説 明できる.		直交関数系についてその概要が説 明できない.	
直交関数展開することができる.			ナに切って その応用を行うてと	直交関数展開することができる.		直交関数展開することができない.	
フーリエ解析について直交関数の 視点で理解する.			ことができる.	フーリエ級数について直交関数の 視点から説明できる.		フーリエ級数について直交関数の 視点から説明できない.	
離散フーリエ解析について理解する。			ことができる.	離散フーリエ変換について説明することができる.		離散フーリエ変換について説明することができない.	
主軸変換と主成分分析について理解する. 学科の到達目標項目との関係			ことができる.	主軸変換と主成分 明することができ	かかについて説 きる.	主軸変換と主成分分析について説 明することができない.	
		貝日との関	到徐				
教育方	<u>法等</u>						
概要			解析に必要となる線形計算の基礎技術に	_			
授業の進	め方・方法		受業内容をよく理解し、次回内容との関	関連性について把握し	しておくこと. ま	た適宜レポートの提出を求める.	
注意点		疑問点が	があれば,その都度質問すること. 予習や復習など60分以上の自学自習時間	明を砕炉オスマレ			
+∞ νν =Τ			ア首17後首なと60万以上の日子日首時間	町で唯休すること.			
授業計	<u> </u>	T _{vm}		1	\@\	-	
前期		週	授業内容		週ごとの到達目標		
		1週	ガイダンスと線形代数のおさらい		線形結合、線形独立、ランクについて学		
	1stQ	2週	最小二乗法		データ点に対して最小二乗法を適用する.		
		3週	最小二乗法		関数やベクトルに対して最小二乗法を適用する.		
		4週	直交関数展開		関数の近似について学ぶ。		
		5週	直交関数展開	関数の近似について学ぶ。			
		6週	直交関数展開	i	計量空間について学ぶ、		
		7週	フーリエ解析	リエ変換につ		夏素フーリエ級数について学び, フー [学ぶ.	
		8週	7ーリエ解析		フーリエ級数と複素フーリエ級数について学び、フーリエ変換について学ぶ。		
		9週	7-リエ解析 パワースペクトルと自己相関関数				
		10週	離散フーリエ解析		離散フーリエ変換について学ぶ.		
		11週	離散フーリエ解析		パワースペクトルと自己相関係数について学ぶ.		
	2-40	12週	固有値問題と2次形式		線形代数のまとめ		
	2ndQ	13週	国有値問題と2次形式		2次形式と標準形について学ぶ.		
		14週	主成分分析		主成分分析について学ぶ.		
		15週	一定期試験一				
			試験答案の返却・解説	映合条の返却・ 辨 就 する		験において間違った部分を自分の課題として把握	
	コアカリ		D学習内容と到達目標			1	
分類		分野	学習内容 学習内容の到達目]標		到達レベル 授業週	
評価割	合						
, i imi ii ,		_	小テスト・レポート等	試験		合計	
31 IMI II 3				80			
	割合		20	80		100	
総合評価			20 10	80 30		100 40	