一関]工業高等	 専門学校	開講年度 令和06年度 (2	 2024年度)	授業科目					
科目基础			,	-,						
科目番号	AC11311A	0021		科目区分	専門 / 選択					
<u>, , , , , , , , , , , , , , , , , , , </u>		講義		単位の種別と単						
開設学科			三工学科 (化学・バイオ系)	対象学年	4	-				
開設期		前期		週時間数	2					
教科書/教	材	教科書:	基本無機化学(荻野博,飛田博実,岡 後藤孝 他 訳,講談社)	月崎雅明,東京化学同人),ウエスト固体化学 基礎と応用(A.R.ウエス						
担当教員		大嶋 江海	•							
到達目標		17 17 12								
② 錯体の ③ 群論と ④ 固体の)構造と性質 :分子の対称)構造が理解	が理解できた 性の基礎が できる。	電子配置を基に理解できる。 る。 里解できる。 が理解できる。							
【教育目が	標】C, D Jック	【学習・	教育到達目標】C-1,D-1							
<u>,, , , , , , , , , , , , , , , , , , ,</u>			理想的な到達レベルの目安	標準的な到達し	ベルの日安	未到達レベルの目安				
		- 14 :				木到達レベルの自女 各元素とその化合物の性質が理解				
各元素とその化合物の性質を,電 子配置を基に理解できる。			す配直を基に説明することが くさる。	各元素とその化 子配置を基に理	合物の性質を, 電 解できる。 	を元素とその化合物の性質が理解できない。各元素の電子配置がわからない。				
錯体の構造と性質が理解できる。			錯体の構造と性質が理解でき,錯体の名称がわかる。また結晶場理論を基に錯体の性質を説明することができる。	錯体の構造と性質が理解できる。 錯体の名称がわかる。		錯体の構造が理解できない。錯体 の性質が理解できない。錯体の名 称がわからない。				
固体の構造が理解できる。			固体の構造について,格子,結晶 系,指数が理解でき,それらを用 いた結晶の分類や結晶構造の説明 ができる。	系,指数が理解	いて, 格子, 結晶 できる。	固体の構造が理解できない。				
X線回折による結晶構造解析が理解 できる。			X線回折において、ブラッグの回折 条件、粉末X線回折の仕組みが理解 できる。さらにX回折の特徴や消滅 則が理解でき、実際の結晶構造と の関わりが理解できる。	X線回折において 条件,粉末X線回 できる。	て, ブラッグの回折 回折の仕組みが理解	X線回折による結晶構造解析が理解 できない。				
学科の3	到達目標項	頁目との関				1				
	C 教育目標	票 D								
教育方法	去等									
概要		無機化学 X線回折	Tで学んだ無機化学の総論を理解したう 法の基礎を学ぶ。	えで,各元素の語	者特性を電子配置を	基に学ぶ。後半は固体物質の構造と				
授業の進	め方・方法	授業は教	対書の内容を中心に行う。必要に応じ	て演習も行う。						
			eで自己学習用の課題を公開するので,指示された日時までに提出すること。 の課題が全課題の4分の1を超える場合は,単位を修得できない。							
注意点		無機化学	【事前学習】 無機化学Iで学んだ原子の構造や化学結合に関する知識が必要であるので、該当部 ∂を復習しておくこと。また,前の時間の授業内容を復習し授業に臨むこと。							
		【評価方	版首 0 Cの 、 ここ。 また,前の時間の投業内容を接首 0 技業に励むここ。 西方法・評価基準】 (80 %) と演習 (20%)で評価する。 60点以上を単位修得とする。							
授業の原	属性・履修			<u> </u>	_ y め。					
□ アクラ	ティブラーニ	ニング	□ ICT 利用	□ 遠隔授業対応	5	□ 実務経験のある教員による授業				
必履修										
授業計画	画									
		週	授業内容		週ごとの到達目標					
	1stQ	1週	典型金属元素 s-ブロック元素(アルカリ金属,アル			レカリ土類金属の電子配置と性質を				
前期		2週	典型金属元素 p-ブロック元素(12~15族の金属)		12~15族の金属の	電子配置と性質を理解できる				
		3週	非金属元素 水素,13族		水素, 13族の非金属元素の電子配置と性質を理る					
		4週	非金属元素 14族,15族		14族, 15族の非金 る	4族, 15族の非金属元素の電子配置と性質を理解で 3				
		5週	非金属元素 16族, 17族, 18族		16族, 17族, 18族の非金属元素の電子配置と性質を 理解できる					
		6週	遷移金属元素 d-ブロック 第一遷移系列元素			の電子配置と性質を理解できる				
		7週	遷移金属元素 d-ブロック 第二,第三遷移系列元素		第二,第三遷移系列元素の電子配置と性質を理解できる					
		8週	中間試験							
	2ndΩ	9週	金属錯体		金属錯体の構造とは理解できる	命名を理解できる, 分子の対称性を				
	2ndQ		金属錯体		生/ 子 ここ む					

		11週	金属銀錯体の	金属錯体 措体の性質(配位の種類, 色, 反応)		金属錯体の性質(配位の種類, 色, 反応)を理解でき る					
	12 13		結晶			結晶格子, ミラー指数, 方位指数を理解できる					
			X線回	泉回折法による結晶構造解析		X線回折法による結晶構造解析について理解できる					
	14週 X			線回折法による結晶構造解析			X線回折法による結晶構造解析について理解できる				
			期末	明末試験			全体の内容について説明できる				
			これ	までのまとめ			無機化学IIの内容を総括できる				
モデルコアカリキュラムの学習内容と到達目標											
分類	分類 分野			学習内容	学習内容の到達目標				到達レベル	授業週	
				無機化学	元素の周期律を理解し、典型元素や遷移元素の一般的な性質を説 明できる。		4	前1,前2,前 3,前4,前 5,前6,前7			
			・生物 野		錯体化学で使用される用語(中心原子、配位子、キレート、配位数など)を説明できる。		4	前9			
専門的能力	分野別の 門工学	専 化学・ 系分野			錯体の命名法の基本を説明できる。		4	前9			
		水刀主			配位数と構造について説明できる。		4	前9,前10			
					代表的な錯体の性質(色、磁性等)を説明できる。		4	前10,前11			
					代表的な元素の単体と化合物の性質を説明できる。		4	前1,前2,前 3,前4,前 5,前6,前7			
評価割合											
			試	験		演習		合計			
総合評価割合 80						20		100			
基礎的能力 40)	10		50				
専門的能力				40		10		50			