	山高等専	門学校	開講年度 令和06年度(2024年度)	授業科目	AI·MOT II		
科目基礎	情報				1			
科目番号		0178		科目区分	専門 / 必修			
授業形態		授業		単位の種別と単位数		1		
開設学科			ス学科	対象学年	4			
開設期		後期		週時間数	2			
教科書/教	M		つくるPython機械学習プログラミング	ノ人門、講談任				
担当教員	.	秋凉 信音	音,田嶋 雄太					
・上記機械	見および分類 ラルネット「 成学習手法」	こついて、p	へて理解し、それらに対する初等的な機 って理解し、誤差逆伝播法による重み更 ythonによる実装ができる。 機要を理解できる。	機械学習手法を適用する 夏新則を導出できる。	ることができる。			
ルーブリ	リック							
			理想的な到達レベルの目安	標準的な到達レベル	レの目安	未到達レベルの目安		
評価項目1 (回帰問題および分類問題)			回帰問題および分類問題について 理解し、それらに対する初等的な 機械学習手法を適用することがで きる。また、工学的問題をこれら の数理的問題に帰着させ解くこと ができる。	回帰問題および分類問題について 理解し、それらに対する初等的な 機械学習手法を適用することがで きる。		回帰問題および分類問題について 理解できず、それらに対する初等 的な機械学習手法を適用すること ができない。		
評価項目 2 (ニューラルネットワーク)			ニューラルネットワークについて 理解し、誤差逆伝播法による重み 更新則を導出できる。また、工学 的な問題をニューラルネットワー クにより解くことができる。	ニューラルネットワ 理解し、誤差逆伝搭 更新則を導出できる	≸法による重み	ニューラルネットワークについて 理解できず、誤差逆伝播法による 重み更新則を導出できない。		
評価項目3 (pythonによる機械学習の実装)			pythonにより機械学習アルゴリズムを実装することができる。また、実装したアルゴリズムを用いて工学的な問題を解くことができる。	pythonにより機械: ムを実装することか		pythonにより機械学習アルゴリスムを実装することができない。		
評価項目4 (強化学習および教師なし学習)			強化学習および教師なし学習について、原理を含めて理解できる。	強化学習および教師いて、概要を理解で		強化学習および教師なし学習について、概要を理解できない。		
		頁目との関]係					
教育方法	等							
概要 ・ニューラ・上記機械			題および分類問題、それらに対する初等的な機械学習手法について講義を行う。 ラルネットワークおよび誤差逆伝播法による重み更新則について講義を行う。 械学習手法について、pythonによる実装を行う。 習および教師なし学習の概要について講義を行う。					
授業の進め	方・方法	・レポー 助および ・事前に (授)	の原理を座学・プログラミング実装を ト作成を通じて各項目に対して理解を レポートの再提出を行う。 行う準備学習:前回の講義の復習および 業外学習・事前)授業内容を予習してお 業外学習・事後)授業内容の復習を行う	·確認する。十分な理能 グ予習を行ってから授 くこと こと	業に臨むこと			
注意点	2.h4	期限に ・到達目 ・本科目 評価が 追認討	・トは全テーマについて、定められた期遅れレポートを提出した場合には、遅標の達成度を確認するために、提出さでは、60点以上の評価で単位を認定で60点に満たない者は、願い出により追続の結果、単位の修得が認められた者	れた期間に応じて減点 れたレポートに対して する。 自認試験を受けること:	点を行う。 て質問することだ ができる。	がある。		
	<u> </u> 性・/復作 イブラーニ	<u>多上の区分</u> ・ヽ.ガ	N	図 遠隔授業対応		□ 実務経験のある教員による授		
☑ アクテ	イノフー_	<u>- ンソ</u>		図 逸際技業別心		大務経験のある教員による技		
·····································								
授業計画	1	週	哲学 内容	\ -	ブレの到法ロ無			
後期	3rdQ	1週	授業内容 回帰(1)		週ごとの到達目標 回帰問題について理解できる。 1次元入力において、最小二乗法によってモデル係数			
		2週	回帰(2)		求めることがで 小二乗法によっ	きる。 てモデル係数を求めることができる		
		3週	回帰 (3)	עם	rthonを用いて回			
		4週	AI数学	確率について理解できる。				
		5週		クラス分類問題について理解できる。				
			クラス分類(1)	確	確率的分類について理解できる。			
		6週	クラス分類(2)	決定木について理解				
		7週	クラス分類(3)	pythonを用いてクラス分類手法を実装できる。				
		8週	レポート作成	ま	回帰問題およびクラス分類問題について、レポート(まとめることができる。			
		9週	ニューラルネットワーク(1)	<u></u>	ニューラルネットワークについて理解できる 関数の勾配について理解できる。			
	4thQ	10週	ニューラルネットワーク(2)		誤差逆伝播法について理解できる。			
					pythonを用いてニューラルネットワークを実装できる			
		11週	ニューラルネットワーク(3)					

教師なし学習の概要を理解できる。

12週

教師なし学習

	13週	強化学習			強化学習の概要を	理解できる。						
	14週	レポート作成			ニューラルネット' ついて、レポート	ニューラルネットワーク・教師なし学習・強化学習に ついて、レポートにまとめることができる。						
	15週	期末試験										
	16週	テスト返却・成績	責説明									
モデルコアカリキュラムの学習内容と到達目標												
分類 分野		学習内容	学習内容の到達			到達レベル 授業週						
評価割合												
	レポート	試験	相互評価	態度	ポートフォリオ	その他	合計					
総合評価割合	60	40	0	0	0	0	100					
基礎的能力	内能力 30		0	0	0	0	50					
専門的能力	評問的能力 15		0	0	0	0	35					
分野横断的能力	15	0	0	0	0	0	15					