Oyama College		Year 2019		Course Title	Building Mech	nanics			
Course	Informa	ition							
Course C	ode	0067			Course Categor	urse Category Specialize		ed / Elective	
		Lecture			Credits	Academi	Credit: 2		
- ·		Departme	nt of Architectu	re	Student Grade	5th	5th		
Term First Ser			ester		Classes per Wee	ek 2			
reaching Materials			, 建築構造の力学II, 森北出版, 2007						
Instructo	or	HORI Akid)						
Course	Objectiv	/es							
2. 前項/	がどのようた	よ手順で数値計	(方法を説明できる) 算されるか説明で 基礎力を醸成する。	できる。					
Rubric									
			理想的な到達レベルの目安		標準的な到達レベルの目安		未到達レベルの目安		
評価項目1			骨組解析や動的解析の基本的な方 法を明確に説明できる。		骨組解析や動的解析の基本的な方 法を説明できる。		骨組解析や動的解析の基本的な方 法を説明できない。		
評価項目2			前項がどのよう されるか明確に	な手順で数値計算 説明できる。	算 前項がどのような手順で数値計算 されるか説明できる。		前項がどのような手順で数値計算 されるか説明できない。		
評価項目3	3		計算結果を盲信しないための基礎 計算結果を盲信し 力を的確に身につける。		ないための基礎 計算結果を盲信しないための基礎 力が身につかない。				
		tment Obj	ectives						
学習・教育	育到達度目 1	票 ④							
JABEE (A	•								
Leachir	ng Metho								
Outline		現在の構造 ※宝務との	頭がは、コンピニ 関係、この科目は	9動的解析法(振動応 1ータ利用が前提と は企業で強非線形3) 応答解析について記	なっており, 解析の 欠元骨組解析の理論	D基礎理論を学ぶ i作成・プログラミ うちのである。	。 ングを担当していた。	た教員が,その経	
Style		1. 授業内	容は講義を基本と				する。		
Notice									
Notice		処埋, など 2. 1-6週, 期段階ほど	を内包しながらす 7,9週, 10-15週 物理的な概念形	子、蚵桶屋、MM- 有機的につながって 別が、それぞれ大き 甲解をしっかりやっ	コングリート構造, 来るのが本科目のP な塊に相当する。各 アおくこと	応用物埋, などの 内容となっている 5塊の中では, 易	の授業が,微分積分 。 から難へ話が進む <i>0</i>), 線形代数, 情報 Dで, それぞれの初	
	Dlan	処理, など 2. 1-6週, 期段階ほど	を内包しながらす 7,9週, 10-15週 , 物理的な概念理	子, 調神道, 妖か. 肩機的につながって 見が, それぞれ大き 里解をしっかりやっ	コングリート構造, 来るのが本科目のP な塊に相当する。各 ておくこと。	応用物埋, などの 内容となっている 5塊の中では, 易	の授業が,微分積分。 。から難へ話が進むの),線形代数,情報 Dで,それぞれの初	
Course	Plan			子, 河 神戸, 火が 再機的につながって 別が, それぞれ大き: 里解をしっかりやっ			の授業が, 微分積分。 。 から難へ話が進むの), 線形代数, 情報)で, それぞれの初 	
	Plan	Т	heme	牙, が 円。		Goals			
	Plan	1st 75	heme たわみ角法の概括	デ, ************************************	J	Goals 既習のたわみ角法	この応用レベルの理		
	Plan	T 1st 方 2nd 臣	heme たわみ角法の概括 団定法の概括	・デ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77	Goals 既習のたわみ角流 既習の固定法の流 掃出し法,変位,		解	
		T 1st 方 2nd 臣 3rd 通	heme こわみ角法の概括 団定法の概括 重立1次方程式,ト	〜 ラスの剛性マトリ	クス	Goals 既習のたわみ角況 既習の固定法の成 掃出し法,変位, 理解	5の応用レベルの理 5用レベルの理解 外カベクトル,剛	解性マトリクス,の	
	Plan 1st Quarter	T 1st	heme こわみ角法の概括 国定法の概括 重立1次方程式, ト その剛性マトリクス	〜 ラスの剛性マトリ⁄	クス	Goals 既習のたわみ角流 既習の固定法の原 掃出し法,変位, 理解 梁の曲げ剛性,資	5の応用レベルの理 5用レベルの理解 外カベクトル,剛 2部材の剛性マトリ	解性マトリクス,のクス,の理解	
	1st	T 1st	heme こわみ角法の概括 団定法の概括 重立1次方程式,ト	〜 ラスの剛性マトリ⁄	クス	Goals 既習のたわみ角流 既習の固定法の原 掃出し法,変位, 理解 梁の曲げ剛性,資	5の応用レベルの理 5用レベルの理解 外カベクトル,剛	解性マトリクス,のクス,の理解	
	1st	T 1st 方 2nd 臣 3rd 通 4th 第	heme こわみ角法の概括 国定法の概括 重立1次方程式, ト その剛性マトリクス	〜ラスの剛性マトリース ス トリクス	クス	Goals 既習のたわみ角を 既習の固定法の原 掃出し法,変位, 理解 梁の曲げ剛性,第 2次元中の座標家 ,の理解	5の応用レベルの理 5用レベルの理解 外カベクトル,剛 2部材の剛性マトリ	解 性マトリクス,の クス,の理解 リクス,部材応力	
Course 1st	1st Quarter	T 1st 方 2nd 臣 3rd 通 4th 第 5th 甲	heme こわみ角法の概括 司定法の概括 直立1次方程式,ト この剛性マトリクス で面骨組の剛性マ	〜ラスの剛性マトリース ス トリクス	クス	Goals 既習のたわみ角流 既習の固定法の原 掃出し法,変位, 理解 梁の曲げ剛性,察 2次元中の座標系,の理解 建物のモデル化,	5の応用レベルの理 5用レベルの理解 外カベクトル,剛 2部材の剛性マトリ E換,全体剛性マト	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解	
Course	1st Quarter	T 1st	heme こわみ角法の概括 司定法の概括 直立1次方程式,ト この剛性マトリクス 立面骨組の剛性マ	〜ラスの剛性マトリース ス トリクス	クス	Goals 既習のたわみ角流 既習の固定法の原 掃出し法,変位, 理解 梁の曲げ剛性,察 2次元中の座標系,の理解 建物のモデル化,	たの応用レベルの理 が用レベルの理解 外カベクトル、剛 全部材の剛性マトリ を換、全体剛性マト 3次元中の座標変 と断面係数、部材耐	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解	
Course 1st	1st Quarter	T 1st 方 2nd 臣 3rd 道 4th 穿 5th 平 6th 立 7th 音 8th 中	heme これみ角法の概括 国定法の概括 国定法の概括 を立1次方程式、ト の剛性マトリクス 可角組の剛性マト なな骨組の剛性マ	〜ラスの剛性マトリース ス トリクス	クス	Goals 既習のたわみ角を 既習の固定法の成 掃出し法,変位, 理解 梁の曲げ剛性,終 2次元中の座標系 の理解 建物のモデル化, 完全弾塑性,塑性	たの応用レベルの理 が用レベルの理解 外カベクトル、剛 全部材の剛性マトリ を換、全体剛性マト 3次元中の座標変 と断面係数、部材耐	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解	
Course 1st	1st Quarter	T 1st 方 2nd 臣 3rd 迫 4th 穿 5th 平 6th 立 7th 音 8th 中 9th 係	heme こわみ角法の概括 国定法の概括 重立1次方程式,ト その剛性マトリクン で面骨組の剛性マ でな骨組の剛性マ でな骨組の剛性マ でなけるが変変でである。	〜ラスの剛性マトリ・ ス トリクス トリクス	クス	Goals 既習のたわみ角流 既習の固定法の成 掃出し法,変位, 理解 梁の曲げ剛性,第 2次元中の座標系 の理解 建物のモデル化, 完全弾塑性,塑性 これまでの範囲を 崩壊メカニズム,	たの応用レベルの理 が用レベルの理解 がカベクトル、剛 会部材の剛性マトリ を換、全体剛性マト 3次元中の座標変 き断面係数、部材耐 を理解する	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解 耐力,の理解	
Course 1st	1st Quarter	T 1st 方 2nd 臣 3rd 道 4th 努 5th 平 6th 立 7th 音 8th 中 9th 伤	heme こわみ角法の概括 国定法の概括 重立1次方程式,ト その剛性マトリクン で面骨組の剛性マ な体骨組の剛性マ でな骨組の剛性マ ではよりでは では、 では、 では、 では、 では、 では、 では、 では、 では、 で	ラスの剛性マトリーストリクストリクスかの概括	クス	Goals 既習のたわみ角況 既習の固定法の成 掃出し法,変位, 理解 梁の曲げ剛性,第 2次元中の座標系 ,の理解 建物のモデル化, 完全弾塑性,塑性 これまでの範囲を 前壊メカニズム, 既習の1質点振動	をの応用レベルの理解のサイベルの理解のサイベルの理解のサイベルの理解のサイベルの関性マトリのででは、全体剛性マトリのででは、全体剛性マトリのでは、全体剛性マトリのでは、全体剛性マトリのでは、全体のでは、一般では、一般では、一般では、一般では、一般では、一般では、一般では、一般	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 力,の理解 耐力,の理解	
Course 1st	1st Quarter	T 1st 方 2nd 臣 3rd 遵 4th 第 5th 平 6th 立 7th 音 8th 中 9th 负 10th 1 11th 世	heme こわみ角法の概括 国定法の概括 国立1次方程式,ト この剛性マトリクジ 面骨組の剛性マ 対なの弾塑性性状 中間試験 R有水平耐力 質点系の自由振動	トリクス トリクス トリクス トリクス がの概括 その応答	クス	Goals 既習のたわみ角を 既習の固定法の成構出し法,変位,理解 梁の曲げ剛性,第 2次元中の座標系,の理解 建物のモデル化, 完全弾塑性,塑性 これまでの範囲を 前壊メカニズム, 既習の1質点振動 1質点系での共振	をの応用レベルの理 が用レベルの理解 外力ベクトル、剛 を部材の剛性マトリ を換、全体剛性マト 3次元中の座標変 を断面係数、部材耐 を理解する 塑性解析法、骨組 の応用レベルでの理	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解 耐力,の理解 理解	
Course 1st	1st Quarter	T 1st 方 2nd 屋 3rd 通 4th 穿 5th 中 6th 立 7th 音 8th 中 9th 例 10th 1 11th 地	heme こわみ角法の概括 国定法の概括 国定法の概括 重立1次方程式,ト この剛性マトリクス 面骨組の剛性マト 以下がある。 正は、	トリクス トリクス トリクス かの概括 その応答 点系への置換	クス 	Goals 既習のたわみ角法 既習の固定法の原 開出し法,変位,理解 梁の曲げ剛性,察 2次元中の座標系 ,の理解 建物のモデル化,完全弾塑性,塑性 これまでの範囲を 前壊メカニズム, 既習の1質点振動 1質点派の共振 剛床仮定,質量	をの応用レベルの理解の力ベクトル、剛力ベクトル、剛力がクトル、剛力が力を換、全体剛性マトクリカでである。 3次元中の座標変は断面係数、部材耐を理解するでは、 塑性解析法、骨組の応用レベルでの理では、の理解できるのででは、	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解 耐力,の理解 理解 解 れ,の理解	
Course 1st	1st Quarter	T 1st 方	heme こわみ角法の概括 同定法の概括 同定法の概括 直立1次方程式、ト この剛性マトリクス で面骨組の剛性マ 区体骨組の剛性マ 同がの弾塑性性状 可間試験 R有水平耐力 質点系の自由振動 動動による1質点系	トリクス トリクス トリクス トリクス 点の概括 気の応答 点系への置換 の自由振動	クス 	Goals 既習のたわみ角別 既習の固定法の所 掃出し法,変位,理解 梁の曲げ剛性,第 2次元中の座標 変物のモデル化,完全弾塑性,塑性 ごれまでの範囲を 崩壊メカニズム, 既習の1質点振動 1質点系での共振 剛床仮定,質量 質量マトリクス,	たの応用レベルの理解の力がクトル、剛子の対象の例性マトリのでは、全体剛性マトリのでは、全体剛性マトリのでは、全体ののでは、全体のでは、全体のでは、一般では、一般では、一般では、一般では、一般では、一般では、一般というでは、一般というでは、一般というでは、一般というでは、一般には、一般には、一般には、一般には、一般には、一般には、一般には、一般に	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 力,の理解 耐力,の理解 軽解 に、の理解 トル,の理解	
Course 1st	1st Quarter	T 1st 方	heme こわみ角法の概括 固定法の概括 重立1次方程式,ト 配の剛性マトリクス で面骨組の剛性マ で体骨組の剛性マ では、の強性性状 では、では、では、 では、 では、 では、 では、 では、 では	トリクス トリクス トリクス トリクス 加の概括 その応答 点系への置換 の自由振動 の地震応答	クス 	Goals 既習のたわみ角流 既習の固定法の成 掃出し法,変位, 理解 梁の曲げ剛性,第 2次元中の座標系 の理解 建物のモデル化, 完全弾塑性,塑性 これまでの範囲を 崩壊メカニズム, 既習の1質点振動 1質点系での共振 剛床仮定,質量類 質量マトリクス, 単位地動,刺激係	たの応用レベルの理 が用レベルの理解 外力ベクトル,剛 会部材の剛性マトリ を換,全体剛性マト 3次元中の座標変 き断面係数,部材耐 理解する 塑性解析法,骨組 の応用レベルでの理解 や地震応答,の理解 では、このに、この理解 では、このに、この理解 では、このに、このに、このに、このに、このに、このに、このに、このに、このに、このに	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解 耐力,の理解 耐力,の理解 軽解 により、の理解 により、の理解 により、の理解 により、の理解 になり、の理解 になり、の理解 になり、の理解 になり、の理解	
Course 1st	1st Quarter	T 1st 方 2nd 昼 3rd 過 4th 字 5th 音 8th 中 9th	heme こわみ角法の概括 国定法の概括 国定法の概括 重立1次方程式,ト この剛性マトリク で面骨組の剛性マ がはの弾塑性性状 では試験 による1質点系の自由振動 動動による1質点系 とか断型多質点系の とも、断型多質点系の	トリクス トリクス トリクス トリクス 加の概括 その応答 点系への置換 の自由振動 の地震応答	クス :	Goals 既習のたわみ角流 既習の固定法の成 掃出し法,変位, 理解 梁の曲げ剛性,第 2次元中の座標系 の理解 建物のモデル化, 完全弾塑性,塑性 これまでの範囲を 崩壊メカニズム, 既習の1質点振動 1質点系での共振 剛床仮定,質量類 質量マトリクス, 単位地動,刺激係	はの応用レベルの理解のカベクトル、剛な部材の剛性マトリで換、全体剛性マトリの変換、全体剛性マトの変換、部材耐を理解する。 型性解析法、骨組の応用レベルでの変や地震応答、の理解である。 は、のでは、は、のでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解 耐力,の理解 耐力,の理解 軽解 により、の理解 により、の理解 により、の理解 により、の理解 になり、の理解 になり、の理解 になり、の理解 になり、の理解	
1st Semeste r	1st Quarter 2nd Quarter	T 1st 方 2nd 昼 3rd 過 4th 字 5th 音 8th 中 9th	heme こわみ角法の概括 記定法の概括 記定法の概括 地立1次方程式,ト との剛性マトリクス で面骨組の剛性マース な骨組の剛性マールが関点系の自由振動 地動による1質点系 とか断型多質点系の ともの断型多質点系の ともの断型多質点系の はものが関係を に対した。 といいては、 にいいては、	トリクス トリクス トリクス トリクス 加の概括 その応答 点系への置換 の自由振動 の地震応答	クス :	Goals 既習のたわみ角弦 既習の固定法の成 掃出し法,変位, 理解 梁の曲げ剛性,第 2次元中の座標系 のの理解 建物のモデル化, 完全弾塑性,塑性 ごれまでの範囲を 崩壊メカニズム, 既習の1質点振動 1質点系での共振 剛床仮定,質量 質量マトリクス, 単位地動,刺激係 弾塑性地震応答角	はの応用レベルの理解のカベクトル、剛な部材の剛性マトリで換、全体剛性マトリの変換、全体剛性マトの変換、部材耐を理解する。 型性解析法、骨組の応用レベルでの変や地震応答、の理解である。 は、のでは、は、のでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解 耐力,の理解 耐力,の理解 軽解 により、の理解 により、の理解 により、の理解 により、の理解 になり、の理解 になり、の理解 になり、の理解 になり、の理解	
1st Semeste r	1st Quarter 2nd Quarter	T 1st 方 2nd 屋 3rd 選 4th	heme こわみ角法の概括 記定法の概括 記定法の概括 地立1次方程式,ト との剛性マトリクス で面骨組の剛性マース な骨組の剛性マールが関点系の自由振動 地動による1質点系 とか断型多質点系の ともの断型多質点系の ともの断型多質点系の はものが関係を に対した。 といいては、 にいいては、	トリクス トリクス トリクス トリクス 加の概括 その応答 点系への置換 の自由振動 の地震応答	クス :	Goals 既習のたわみ角弦 既習の固定法の成 掃出し法,変位, 理解 梁の曲げ剛性,第 2次元中の座標系 のの理解 建物のモデル化, 完全弾塑性,塑性 ごれまでの範囲を 崩壊メカニズム, 既習の1質点振動 1質点系での共振 剛床仮定,質量 質量マトリクス, 単位地動,刺激係 弾塑性地震応答角	をの応用レベルの理解の力がつけれ、剛ないのでは、 をかける。 をかける。 をかける。 をかける。 をかける。 をはいる。 をは、 をは、 をはいる。 をは、 をは、 をは、 をは、 をは、 をは、 をは、 をは、	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解 耐力,の理解 耐力,の理解 軽解 により、の理解 により、の理解 により、の理解 により、の理解 になり、の理解 になり、の理解 になり、の理解 になり、の理解	
1st Semeste r	1st Quarter 2nd Quarter	T 1st 方 2nd	heme こわみ角法の概括 記定法の概括 記定法の概括 記立1次方程式、ト この剛性マトリクス 正面骨組の剛性マース体骨組の剛性マース体骨組の剛性マークの弾塑性性状 可聞試験 に対しているのでは、 には、には、 には、には、には、には、 には、には、には、には	トリクス トリクス トリクス トリクス 加の概括 その応答 点系への置換 の自由振動 の地震応答 折	クス :	Goals 既習のたわみ角法 既習の固定法の原 開出し法,変位,理解 2次理解 2次理解 2次理解 2次理解 建物のモデル化,察 建学の曲が剛性,塑性,塑性,塑性がまでの範囲を 明とのでの共産が関係での共産が 関係なアリクス,関単位地動震応等 に対しているでの範囲を は対しているでのでである。 は対しているでのでは、対対では、対対でのを はいまでの範囲を にいるでのでは、対対では、対対では、対対でのを はいるでのでは、対対では、対対では、対対では、対対では、対対でのを はいるでは、対対では、対対では、対対では、対対では、対対では、対対では、対対では、対	をの応用レベルの理解の力がつけれ、剛ないのでは、 をかける。 をかける。 をかける。 をかける。 をかける。 をはいる。 をは、 をは、 をはいる。 をは、 をは、 をは、 をは、 をは、 をは、 をは、 をは、	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 カ,の理解 耐力,の理解 軽 れ,の理解 トル,の理解 地震応答,の理解 クトル,の理解	
1st Semeste r	1st Quarter 2nd Quarter i动 Meth 記 10	T 1st 方 2nd	heme わみ角法の概括 記定法の概括 記定法の概括 記立1次方程式,ト での剛性マトリクス で面骨組の剛性マアイの弾塑性性状では試験 に対している自由振動を動による1質点系では、が、一般で変質点系では、が、一般で変質が表す。 は、が、型を関係を対しているのでである。 は、が、型を質点系では、が、型を質点系では、が、型を質点系では、が、型を質点系では、が、関係できない。 は、が、関係できないが、関係できないが、関係できないが、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は	トリクス トリクス トリクス トリクス 加の概括 その応答 点系への置換 の自由振動 の地震応答 折	態度	Goals 既習のたわみ角法 既習の固定法のが開出し法,変位,理解 ②次元理解 ②次元理解 ②次元理解 建物のモデル化, 完全弾塑性,塑性 これまでの共生 が関連の共変を のまずのでで、 のまずのでで、 のまずのでで、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは	はの応用レベルの理解 外力ベクトル、剛 のではないでは、全体剛性マトリのでは、全体剛性マトリのでは、全体剛性マトリのでは、全体剛性マトリのでは、大力でのでは、では、大力では、大力では、大力では、大力では、大力では、大力では、大力では	解 性マトリクス,の クス,の理解 リクス,の理解 リクス, 部材応力 換,の理解 カ,の理解 耐力,の理解 耐力,の理解 トル,の理解 やル,の理解 セ震応答,の理解 クトル,の理解	
1st Semeste r	1st Quarter 2nd Quarter iiii 10 力 0	T 1st 方 2nd 昼 3rd 過 4th 穿 5th 中 6th 方 5th 每 10th 1 11th 块 12th 通 13th	heme こわみ角法の概括 国定法の概括 国定法の概括 国立1次方程式,ト の剛性マトリク で面骨組の剛性マース 体骨組の剛性マース 体骨組の剛性マース が中間試験 による1質点系の はん断型多質点系の はん断型多質点系の が対したが、 には、 には、 には、 には、 には、 には、 には、 には、 には、 には	トリクス トリクス トリクス トリクス トリクス 加の概括 その応答 点系への置換 の自由振動 の地震応答 折	クス : : : : : : : : : : : : : : : : : : :	Goals 既習のたわみ角弦 既習の固定法の成 掃出し法,変位, 理解 梁の曲げ剛性,察 2次での理解 2次での理解 建物のモデル化, 完全弾型性,塑性 これまでの範囲を 前壊メカニズム, 既習の1質点振動 1質点系での共動 1質点系での共動 1質量でのも 1質量での共力の表 関連を表する。 単型性地動、刺激係 弾型性地での範囲を ポートフォリオ 0	はの応用レベルの理解のサンベクトル、剛子部材の剛性マトリのでででででででいる。 を部材の剛性マトリのでででででいる。 をかったでは、一般では、一般では、一般では、一般では、一般では、一般では、一般では、一般	解 性マトリクス,の クス,の理解 リクス,部材応力 換,の理解 力,の理解 耐力,の理解 軽解 トル,の理解 トル,の理解 セ震応答,の理解 クトル,の理解	