Tsuyama College			Year	202				Course Title	Num	rical Analysis
Course Information										
Course Code	0034					Course Category		Specialized / Elective		
Class Format	Lecture					Credits		Academic Credit: 2		
Department	Advanced Electronics and Information System Engineering Course					Student Grade		Adv. 2nd		
Term	First Semester					Classes per Week		2		
Textbook and/or Teaching Materials	Textbooks : MITSUIDA Yoshiro et al.,"Numerical Calculation Method 2nd Ed. New Version(Japanese)"(Morikita Pub.)									
Instructor	ONISHI Atsushi									
Course Objectives										
Learning purposes : It is necessary to understand the computer-specific errors, in order to execute calculations for a large scale engineering phenomena by a computer. it is also necessary to understand calculation that is suitable for computers and methods to obatin approximate solutions for problems for which there is no general solution method. The purpose of this lecture is to understand these points.										
Course Objectives : 1. To understand the various errors that occur on a computer. 2. To be able to explain the principles and characteristics of well-known numerical methods.										
Rubric										
	Excellent				Good		Acceptable			Not acceptable
Achievement 1	The students can raise all names and characteristics of errors which occur in the calculation process and which are caused by the expression method of numbers in this class.				The students can raise names and characteristics of 80% of errors which occur in the calculation process and which are caused by the expression method of numbers in this class.		The students can raise names and characteristics of 60% of errors which occur in the calculation process and which are caused by the expression method of numbers in this class.			The students can raise only names and characteristics of less 60\% of errors which occur in the calculation process and which are caused by the expression method of numbers in this class.
Achievement 2	The students can explain all principles and characteristics of the numerical calculation methods in this class.				The students can explain principles and characteristics of 80% of the numerical calculation methods in this class.		The students can explain principles and characteristics of 60% of the numerical calculation methods in this class.			The students can explain only principles and characteristics of less 60% of the numerical calculation methods in this class.

Assigned Department Objectives

Teaching Method

Outline	General or Specialized: Specialized Field of learning : Information System•Programming•Network Foundational academic disciplines: Information Science, Computer Engineering and related fields / High performance computing Relationship with Educational Objectives :This class is equivalent to "(2) Specialized technical fields pertaining to electrical/electronic engineering, and information/control systems". Relationship with JABEE programs : The main goal of learning / education in this class is "(B)". Course outline : Simulation is one of the essential part of technology development in any engineering field. In simulation, computer solve a mathematical model that describes an enginnering phenomena. This course provides understanding the calculations and their important points in computing on a computer.
Style	Course method : The class explanes the topics of numerical analysis using materials. Exercises will be given as much as possible. Some explanations that are not in textbook will based on handouts. In principle, preparation or review will be presented for each topics. Grade evaluation method : Exams (70\%) + Reports(50\%). Examinations will be conducted a total of 2 times, and the evaluation ratios will be even. The teacher does not carry out the reexamination without defects in the regular examination. If the teacher carry out a makeup exam, the teacher will show persons concerned requirements for retesting. Bringing textbook and notebook at examination is not permitted but depending on the situation. Examinations are based on the rubric but there is no guarantee that the examinations cover achievements in rubric.

Notice		Precau of study review Course simulation Founda Algebra Progran Attenda conside the stu refer to The com charact	ions on the enro is required per nstructor regardi mathematics pre advice : This clas ion systems and nowledge of math tional subjects : (2), Differential mming Language nce advice : If th rs that ths stude dets have learned their texts and n Then the studen mputer solves ma eristic solutions a	ment : This is edit, including study outside usly. is suitable for acquire the matics they undamental Integral II(3)), Experiment student is lat was absent o like Differentia es as approp should be do mathematic the related	ass that requi th class time class hours.A udents who woul c knowledge of learned. hematics I(1), Applied Mathe Electronic and or the role call when late tw and Integral, L e. The preparato This work help problems by th blems in this	study outside of d study outside a preparatory stu Id like to know d the development. ifferential and Int atics II(4), Progr Computer System he will be treated . This class is ba ear Algebra and so ry work is the m the students' und computer's own ss.	class ho ass time y, the velopme The stu egral I(mming s(EC1) as a late ed on k in part erstandi way. The	tal of 45 hours the instructions are required to puter expected to mental Linear gramming II(2), he teacher of mathematics ould be able to dy outside of ure. learn these
Characteristics of Class / Division in Learning								
\square Active Learning			\square Aided by ICT		\square Applicable to Remote Class		Instructor Professionally Experienced	
Elective subjects								
Course Plan								
			Theme			Goals		
$\begin{aligned} & \text { 1st } \\ & \text { Semeste } \end{aligned}$r	1st Quarter	1st	Guidance					
		2nd	Errors			The students understand the relation between numerical representation and errors on a computer. The students understand the effects of errors of numerical calculations on a computer.		
		3rd	Equation1(Bisection method, Newton's method)			The students can explain bisection method. The students can explain some major numerical algorithms for computers.		
		4th	Equation2(Bare Stow method)			The students can explain bare stow method, The students can explain some major numerical algorithms for computers.		
		5th	Equation system1(Gauss-Jordan Iteration method)			The students can explain Gauss-Jordan iteration method. The students can explain some major numerical algorithms for computers.		
		6th	Equation system	(Gauss-Seidel	ethod)	The students can The students can algorithms for	$\begin{aligned} & \text { explair } \\ & \text { explair } \end{aligned}$ omputer	eidel method. ajor numerical \qquad
		7th	Interpolation1(grange's Inte	lation)	The students can The students can algorithms for	n explair omputer	e's interpolation ajor numerical
		8th	Mid-term exam					
	2nd Quarter	9th	Return and commentary of exam answers,Interpolation2(Least Square method)			The students can explain least square method. The students can explain some major numerical algorithms for computers.		
		10th	Numerical integration(Trapezoidal rule, Simpson's rule)			The students can explain Trapezoidal rule. The students can explain Simpson's rule. The students can explain some major numerical algorithms for computers.		
		11th	Ordinary differential equation(Euler's formula, Runge-Kutta method)			The students can explain Euler's formula. The students can explain Runge-Kutta method. The students can explain some major numerical algorithms for computers.		
		12th	Partial differential equation1(Parabolic type)			The students can explain the elucidation of p arabolic type partial differential equation. The students can explain some major numerical algorithms for computers.		
		13th	Partial differential equation2(Hyperbolic type, Elliptic type)			The students can explain the elucidation of hyperbolic type partial differential equation. The students can explain the elucidation of elliptic type partial differential equation. The students can explain some major numerical algorithms for computers.		
		14th	Inverse matrix			The students can explain how to find inverse matrix. The students can explain some major numerical algorithms for computers.		
		15th	(Final exam)					
		16th	Return and commentary of exam answers					
Evaluation Method and Weight (\%)								
		xamination	Presentation	Mutual Evaluations between students	Behavior	Report	Other	Total
Subtotal	70		0	0	0	30	0	100

Basic Proficiency	0	0	0	0	0	0	0
Specialized Proficiency	70	0	0	0	30	0	100
Cross Area Proficiency	0	0	0	0	0	0	0

