		専門学校	開	講年度	令和06年度((2024年度)	授	業科目	応用化学特別実験		
科目基礎	目基礎情報										
科目番号		0015				科目区分	専門 / 必修		修		
授業形態		実験				単位の種別と単	位数 学修単位: 4		: 4		
開設学科		応用化学	専攻			対象学年		専1			
開設期		通年				週時間数		前期:4 後	始:4		
教科書/教材	才	教科書:	実験テー	·マごとに各	トテキストが配布で	される。					
担当教員		梅田 哲,	小寺 史浩	,堺井 亮介	,杉本 敬祐,千葉 記	城,津田 勝幸,兵野 第	篤,古崎 問	幸,松浦 裕	志,宮越 昭彦,辻 雅晴		
担当教員 梅田 哲,小寺 史浩,堺井 亮介,杉本 敬祐,千葉 誠,津田 勝幸,兵野 篤,古崎 睦,松浦 裕志,宮越 昭彦,辻 雅晴 到達目標											
1. 目的応じた分析方法の選択,分析条件の設定,一連のプロセスを理解し,データをもとに考察ができる。 2. 目的達成のために他者と協調・協働して行動する意義を理解し,かつその行動できる。 3. 体裁等が整い,他者が理解できる記述内容のレポートを作成できる。											
ルーブリ	ック										
				りな到達レ	ベルの目安	標準的な到達レ	ベルの目	l安	未到達レベルの目安		
評価項目1			— i	重のプロセ <i>,</i> - タをもと	, 分析条件の設定 スを正しく理解し にした考察が良好	- 1 一連のプロセ	スの理解	4, データ	一浦のプロセスの理解 ギータ		
評価項目2			に他を	きる。 働し			に他者と ほぼでき	協調・協	目的達成のために他者と協調・協 働した行動ができない。		
評価項目3				等が整い, か 述内容のレン	他者が理解しやす ポートを作成でき	体裁等がほぼ整 きる記述内容の きる。	い, 他者 レポート	が理解で を作成で	体裁等が不十分であり,他者が理解できる記述内容のレポートを作成できない。		
学科の到	達目標項	目との関	係								
学習・教育	到達度目標	『 (応用化学	専攻の教	育目標) 学	習・教育到達度目	標 (専攻科の教育	目標)				
教育方法	等										
概要	ーしてデー	・夕解析や	分野の実験を通して,応用化学の固有技術や総合技術を習得する。また,様々なコンピュータソフトを利用解析やレポート作成を遂行できる能力を養う。 る小グループに分割した上で,授業内容に示した実験を行い,自学学習時間を用いてレポートを作成する。 前には,実験を効率よく進めるために内容を理解し,操作手順・背景などを予習しておく。								
また、美験的には、美験を効率よく進めるために内容を理解し、操作手順・育家などを予省しておく。 実験日の1週間前までに各担当教員のもとへ赴き、事前レポート等の指示をうけること。実験レポートは実験テーマ後1週間以内に提出する。 実験への取り組み、および提出されたレポートに対し、以下の注意点の記載等に基づいて評価を行う。但し、全てポートが受理されていなければ単位を取得できない。								こと。実験レポートは実験テーマ終了			
・総時間数180時間(自学自習60時間) ・自学自習時間(60時間)は、日常の授業(120時間)に係わる理論についての予習復習時間,実験装置・方法の 深め正しい計測を行なうための予習復習時間,実験結果を検討し報告書をまとめる時間等を総合したものとする。 ・評価については、合計点数が60点以上で単位修得となる。その場合、各到達目標項目の到達レベルが標準以上ことが認められる。								時間等を総合したものとする。			
・小寺教員については後期のみ担当 授業の属性・履修上の区分											
□ アクテ				CT 利用		□ 遠隔授業対応	芯		□ 実務経験のある教員による授業		
授業計画	Ī .	I	T				I.= ».				
		週	授業内容	\$				の到達目標			
	1stQ	1週	ガイダン実験準備				して記述 成績の記述理解	実験スケジュールが理解できる。レポートの作成に関 して記載すべき項目,提出締切について理解できる。 成績の評価方法が理解できる。安全な実験の取り組み が理解できる。 実験の準備ができる。			
前期		2週	異なる炭	炭素化合物 の	評価(1)	複数の未知炭化物試料について分析手法をグループで検討し,各自で分析・測定を実施した上で未知炭化物の同定を行うことができる。 実験の準備ができる。					
		3週	異なる炭	素化合物の	D同定法の探索と	評価(2)	検討し,の同定	複数の未知炭化物試料について分析手法をグループで 検討し,各自で分析・測定を実施した上で未知炭化物 の同定を行うことができる。			
		4週	未知課題	夏の解決(1	1)		以下のような課題の中から一つを選択し,実験指針を立て,遂行し,得られたデータを解析して結論を導くことができる(課題は年度により異なう。・接着剤の硬化過程を定量的に評価せよ。・繊維片の主成分を特定し,混合物である場合には組成比を決定せよ。				
		5週	未知課題	夏の解決(2	2)		ことが [*] ・接着剤 ・繊維	以下のような課題の中から一つを選択し,実験指針 立て,遂行し,得られたデータを解析して結論を導 ことができる(課題は年度により異なる)。 ・接着剤の硬化過程を定量的に評価せよ。 ・繊維片の主成分を特定し,混合物である場合には 成比を決定せよ。			
		6週	実験準備レポート	験準備(2) ポート点検(1)				実験の準備ができる。 レポートの記載内容の点検・再点検・見直しができる。			
		7週	担子菌類	頁・不完全値	菌類など糸状菌のI	取り扱い(1)) を取り	り扱うため	トノコ)や不完全菌類(カビの仲間 かの基本技術(培養・観察手法,防菌 果の確認手法など)を扱うことができ		

		8週		担子甚	園類・不完全 [素類など糸状菌の取り扱い(2)	担子菌類(主にキノコ)や不完全菌類(カビの仲間)を取り扱うための基本技術(培養・観察手法,防菌 防黴剤の利用効果の確認手法など)を扱うことができ			
		9週		PVDF			る。 電気泳動後のタンパク質をPVDF膜に電気転写し、抗体 等を用いて特異的な検出を実施することができる。			
		10i	<u></u>	PVDF	膜に転写した	タンパク質の特異的検出(2)	電気泳動後のタンパク質をPN 等を用いて特異的な検出を実	/DF膜に電気	転写し, 抗体	
	2ndQ	11ป	<u></u>	実験 ² レポ-	単備(3) −ト点検(2)		実験の準備ができる。 レポートの記載内容の点検・			
		12认	<u></u>	スチl 合 (:	 ノン, メタク [!] 1)	リル酸メチルの精製とラジカル共重	。 モノマーの精製,ラジカル共	 :重合ができる	5.	
		13ป	<u></u>		ノン, メタク!	リル酸メチルの精製とラジカル共重	 モノマーの精製, ラジカル共	重合ができる	5.	
		14ป	<u></u>			GPCによる分子量測定(1)	 上記共重合体を精製し,生成 ロマトグラフィーにより測定	 物の分子量を できる。	ゲル浸透ク	
		15ป	<u></u>	共重台	合体の精製と(GPCによる分子量測定(2)	上記共重合体を精製し,生成 ロマトグラフィーにより測定	物の分子量を		
		16ป	<u></u>							
		1週		共重台	合体のNMRに	よる共重合体組成比の検討(1)	上記共重合体の組成比を核磁気共鳴装置により測定で きる。			
		2週		共重台	合体のNMRに	よる共重合体組成比の検討(2)	上記共重合体の組成比を核磁気共鳴装置により測定で きる。			
		3週		遺伝	子組換えした。	大腸菌の培養と蛋白質の発現(1)	遺伝子組み換えした大腸菌を せることができる。	培養し、蛋白	質を発現さ	
		4週		遺伝	子組換えした	大腸菌の培養と蛋白質の発現(2)	遺伝子組み換えした大腸菌を せることができる。	遺伝子組み換えした大腸菌を培養し、蛋白質を発現さ		
	3rdQ	5週		実験 ² レポ-	隼備(4) −ト点検(3)		実験の準備ができる。 レポートの記載内容の点検・再点検・見直しができる			
		6週		金属表	表面での反応(こついて (1)	金属表面で進行する化学反応およびこれに影響を及ぼ す因子を理解できる。			
		7週		金属表	表面での反応(こついて (2)	金属表面で進行する化学反応およびこれに影響を及ぼ す因子を理解できる。			
後期		8週		実験 ² レポ-	集備(5) −ト点検(4)		実験の準備ができる。 レポートの記載内容の点検・再点検・見直しができる。			
	4thQ	9週		酵素電	電極を用いる	ブルコースの定量(1)	グルコースオキシダーゼを用い酵素電極を作製し,グ ルコースの定量分析に応用できる。			
		10រ៉	0週 酵素		電極を用いる	ブルコースの定量(2)	グルコースオキシダーゼを用い酵素電極を作製し,グ ルコースの定量分析に応用できる。			
		11i	.週 微細落		桑類由来の代 詞	射産物の分析(1)	高速液体クロマトグラフ質量 いて代謝産物の分析・同定が		MS)等を用	
		12ป	2週 微細系		桑類由来の代記	射産物の分析(2)	高速液体クロマトグラフ質量分析計(LC/MS)等を用いて代謝産物の分析・同定ができる。			
		13ปั			準備(6) −ト点検(5)		実験の準備ができる。 レポートの記載内容の点検・再点検・見直しができる。			
		14ป	14週 液相		還元法による:	金属微粒子合成(1)	液相還元法を用いた金属微粒子合成法を理解し、合成 条件と生成微粒子との相関を理解できる。			
		15ป	15週 液		還元法による:	金属微粒子合成(1)	液相還元法を用いた金属微粒条件と生成微粒子との相関を	子合成法を理	上解し、合成	
		16週								
モテルコ 分類	アカリキ	-그 -	ラムの 分野	字習	内容と到達 _{学習内容}	≦目標 学習内容の到達目標		到達レベル	拉 森油	
ル規			<i>)</i>]±j			子首内各の到達日標 加熱還流による反応ができる。		到達レバル 5	以未炟	
					有機化学実験	吸引ろ過ができる。	5			
		・ 実 系分・			197	収率の計算ができる。		5		
					分析化学実験	代表的な定性・定量分析装置として、液クロ)や、物質の構造決定を目的 X線回折、NMR等)、形態観察装置と 表的ないずれかについて、その原理・ 析までの基本的なプロセスを行うこ	5			
専門的能力	分野別の 学実験・		化学・ 系分野 験・事	学·生物 分野【実 実習能		固体、液体、気体の定性・定量・構 必要な特定の分析装置に関して測定 タから考察をすることができる。	5			
	習能力		治」 个		物理化学実験	温度、圧力、容積、質量等を例にと)、実験精度、再現性、信頼性、有効 熱に関する測定(溶解熱、燃焼熱等)を	5			
						0		5		
						分子量の測定(浸透圧、沸点上昇、凝 より、束一的性質から分子量を求め	5			
					生物工学実	滅菌・無菌操作をして、微生物を培養	5	前7,前8		
					験	クロマトグラフィー法または電気泳! することができる。	5			

評価割合										
	技術・知識習得 度	分析能力	達成度	積極性・協調性	ポートフォリオ	その他	合計			
総合評価割合	20	20	30	30	0	0	100			
基礎的能力	10	10	10	5	0	0	35			
専門的能力	10	10	10	5	0	0	35			
分野横断的能力	0	0	10	20	0	0	30			