科目基礎情科目番号		専門学校		2021年度)	授業権	70 17	勿質科学	
科目番号	有殺		開講年度 令和03年度 (2					
		0010		科目区分		専門/選択		
授業形態		講義		単位の種別と単位数 学修単位:		修単位: 2	2	
開設学科			- ム工学専攻	対象学年	専:			
開設期		前期	11111 = 173+VL ++ ++794/LEE4VL	週時間数		2		
教科書/教材 担当教員		画用地幹治, 西野 純一	岩井薫,伊藤浩一著,基礎物質科学	大字の化字人門	1 三共出版(2007)			
到達目標		四卦/ 祀						
	[化学]	を基礎として	こ,物質の多様性,原子・分子レベル	での物質の成り立	 ちを理解す	ること。	物質と人類の発展について理解す	
ルーブリッ	/ク							
			理想的な到達レベルの目安	標準的な到達レベルの目		安 未到達レベルの目安		
原子の電子配置とその性質			原子の電子配置を理解しその性質 を説明できること				原子の電子配置を理解していない	
物理化学			物理化学的内容について理解し ,物質の振る舞いについて十分に 説明できること.	物理化学的内容は ,物質の振る舞り きること.				
			80点以上	70点以上			59点以下	
学科の到達	4目標項	目との関係	1	,				
JABEE JB1	10\-75	/ / /	•					
教育方法等	 							
概要	,	無機化学とて行う. 実	- 物理化学をベースとした物質科学の ミ際の工業的な応用例やトピックスを り存在度が大きい元素について指名に	教科書に沿って行り取り上げ、知識と		学習の評を	で価を抜き打ちの不定期試験によっ ・埋めるように講義を行う. また	
授業の進め方	う・方法	教科書に沿行って来る	かがに及が入るが光素について指右によって行う。授業外学習の評価を抜き 5こと。実際の工業的な応用例やトピ 心殻中の存在度が大きい元素について	打ちの不定期試験(ックスを取り上げ)	によって行, 知識と実	うので, 体験のキ	必ず授業内容の予習と復習を毎回 デャップを埋めるように講義を行う	
注意点 授業の属性	‡・履修	テム糸2年 評価方法: 評価基準:	-ム工学プログラム: JB1(◎) 地球環境(専攻科共通1年), 生物学(□)) 定期試験得点60%にプレゼンテーシ 総合評定60点以上を合格とする。					
□ アクティ:			□ ICT 利用	□ 遠隔授業対応	<u></u>		□ 実務経験のある教員による授業	
	<i></i>		101 (13/13	L ZERIIIXX/1/III	<i>y</i> -		- America Charles Dixx	
授業計画								
			受業内容		週ごとの至	達目標		
		1週 2	ンラバスの説明,物質と社会,近代科D分類,物質の分離,化学における測 受業外学習: 教科書p18-19の章末問 と:また,教科書p21からp28を読み, について理解し,演習を2-1から2-8 こと。	物質の分類,物質の分離,化学における測定と単位を 理解し,説明できること.				
		2週	物質を構成する原子とは何か,元素の原 受業外学習: 教科書p28からp39を読 ら2-7について理解し,演習を2-9から こおくこと.	み, 例題2-6か	物質を構成する原子とは何か,元素の原子量と物質量について理解し,説明できること.			
		3週 打	原子の中の電子配置 受業外学習: 教科書p39からp47を読 .5から2-21まで解いておくこと.	原子の中の電子配置について理解し,説明できること.				
1.6	1stQ	₁ 打	元素の周期性 受業外学習: 教科書p48からp56を読 Dいて理解し,演習を2-22から2-29ā ニ・	み, 例題2-8に まで解いておくこ	イオン化エネルギー,電子親和力等の元素の周期性について理解し,説明できること。			
前期	siQ	5週 対	う子と結合 受業外学習: 教科書p57からp67を読 道, sp2混成軌道, sp混成軌道および 理解しておくこと.	分子軌道法と原子価結合法について理解し説明できる こと.				
		6週 ^打	か子の構造とそのかたち,分子のかた 受業外学習: 教科書p67からp72を読 ファンデルワールスカ,水素結合, 舌性剤について理解しておくこと.	VSEPRについて理解し,分子の形を予測できること.				
		7週 a a a a a a a a a a a a a a a a a a a	その他の結合 受業外学習: 教科書p73の章末問題を また,教科書p75からp86を読み,例 .2について理解し,演習を3-1から3- くこと.	分子間力,水素結合について理解し,説明できること.				
		É	、ニュー 元体 受業外学習: 教科書p87からp99を読 ら3-22について理解し,演習を3-137	ファンデルワールスの気体の状態方程式を通じて気体 について理解し,説明できること.				
		ū	いておくこと.					

	10週	固体,物質の状態を 授業外学習: 教科 解くこと。また, す 4-1から4-2につい 解いておくこと.			物質の三態以外のと.	状態について理解	し,説明できるこ	
	11週	化学反応と化学式, 授業外学習: 教科 1から4-3について いておくこと.	化学反応と反応素 書p115からp132 理解し,演習を4-1	^快 を読み,例題4- 1から4-9まで解	化学反応の反応熱	を計算できること		
	12週	反応速度 授業外学習: 教科 4から4-5について: 解いておくこと.	書p132からp135 理解し,演習を4-1	を読み, 例題4- 10から4-11まで	反応速度について理解し,反応速度定数の温度依存性 がアレニウスの式に従うことを説明できること.			
	13週	平衡の概念 授業外学習: 教科 6から4-11について 解いておくこと.	書p136からp150 [;] C理解し, 演習を4	を読み,例題4- -12から4-24まで	平衡について理解し,平衡定数を計算できること.			
	14週	酸と塩基 授業外学習: 教科 11から4-13につい で解いておくこと.	て理解し,演習を	を読み,例題4- 4-25から4-29ま	酸塩基の定義について理解し,酸として働く物質と塩 基として働く物質を説明できること.			
	15週	酸化還元 授業外学習: 教科 解くこと.	書p163からp1666	の章末問題を全て	酸化還元について理解し、酸化されている物質と還元されている物質を説明できること.			
	16週	試験返却と解説,		不正解の問題について正答が理解できること.				
モデルコアカ	リキュラムの)学習内容と到達	目標					
分類 分野		学習内容	学習内容の到達目	 標		到達し	バル 授業週	
評価割合	•					•		
	試験	発表	相互評価	態度	ポートフォリオ	不定期試験	合計	
総合評価割合	60	20	0	0	0	20	100	
基礎的能力	60	20	0	0	0	20	100	
専門的能力	0	0	0	0	0	0	0	
分野横断的能力	0	0	0	0	0	0	0	