北九/	州工業高等	等専門学校	開講年度 令和06年度 (2	2024年度)	授業科目	機械設計Ⅱ		
科目基礎	營情報							
4目番号		0137		科目区分	専門 / 必修			
受業形態				単位の種別と単				
開設学科		生産デザース)	イン工学科(知能ロボットシステムコ	対象学年	4			
用設期					2			
教科書/教	材		計法(第3版)」塚田忠夫、吉村靖夫、					
旦当教員		寺井 久宣	!					
到達目標	<u> </u>	•						
2. 機械お 3. 部品の	よび機械要素	素の定義、機 精度、公差、	、機械力学などの知識を活用して、機械設計の概念や手順を説明できる。 はめあいなどの設計仕様を決定できる り軸受の寿命およびクラッチ、ブレー)。		ಕಿる。		
レーブリ	ノック			T				
			理想的な到達レベルの目安 標準的な到達し		ベルの目安 未到達レベルの目安			
機械材料、材料力学、工業力学、 機械力学などの知識を活用して、 機械要素を合理的かつ安全に設計 できる。			機械材料、材料力学、工業力学、機械力学などの知識を活用して、機械要素を合理的かつ安全に設計できる。	機械材料、材料 機械力学など授 基に、基礎的な きる。	力学、工業力学、 業で学んだ知識を 機械要素を設計で	機械材料、材料力学、工業力学、 機械力学などの授業で学んだ知識 を活かせない、または、機械要素 の合理的かつ安全な設計ができな い。		
機械および機械要素の定義、機械 設計の概念や手順を説明できる。			機械および機械要素の定義、機械 設計の概念や手順を説明できる。	機械および機械 設計の概念や手 事を基に説明で	要素の定義、機械順を授業で学んた きる。	機械および機械要素の定義、機材設計の概念や手順を説明できない。		
部品の寸法や形状精度、公差、は めあいなどの設計仕様を決定でき る。			部品の寸法や形状精度、公差、は めあいなどの設計仕様を決定できる。	部品の寸法や形 めあいなどの設 んだ事を基に決	ェー・ 状精度、公差、に 計仕様を授業で学 定できる。	は 部品の寸法や形状精度、公差、は めあいなどの設計仕様を決定できない。		
軸受の種類や特徴の説明、転がり 軸受の寿命およびクラッチ、ブレ ーキの能力を計算ができる。			軸受の種類や特徴の説明、転がり 軸受の寿命およびクラッチ、ブレ ーキの能力を計算ができる。	軸受の種類や特軸受の寿命およ	徴の説明、転がり びクラッチ、ブレ 業で学んだ事を基			
学科の至]達目標項	目との関	 係					
学習・教育	9到達度目標	票 A① 数学・	・・・ 物理・化学などの自然科学、情報技術 ・野における工学の基礎を理解できる。	に関する基礎を 理	里解できる。			
<u>字音・教育</u> 教育方法		_死 DU 等门勿	まれてのかる工子の基礎を理解じざる。					
概要 て、それらの暗記では 械の開発を や設計開発 教科書に基 投業の進め方・方法 の実践経験			I 」「機械設計 I I 」として前期後期に分けて取組む。機械および機械システムの構成要素の理解を第一としらを構築する際に必要な設計手法、強度や剛性の計算に必要な数式による評価法を身に付ける。単なる計算式はなく、関連する資料やデータベースを有効に活用できるようにする。この科目は、企業で工作機械や製鉄材を担当していた教員が、その経験を活かし、後期では主に歯中や軸受などの各種機械要素の実践的な使用方流発の実例を紹介しながら、機械設計に関する基礎を講義形式で授業するものである。 基づいた授業を基本とする。概要や補足事項を主に板書で説明する。身近なトピックスを取り上げたり、教員験の例を基に実物や図表を参照したりして理解を補い、関心を持てるようにする。計算式の活用については過					
 主意点		固体力学の	、小テストやレポートで理解の進捗度 の基礎的な知識を前提とする。授業内 電点を持続すること		予習をしておくる	ことが望ましい。また、授業で演習を		
	a性,房心	<u> </u>	、電卓を持参すること。					
	<u> 51年・/復19</u> ィブラーニ		□ ICT 利用	□ 遠隔授業対応	.	□ 実務経験のある教員による授		
」・アクテ	1 / / /	<u>-ノ・ノ</u>		□ 逐附坟耒刈//	r)	凶 天物柱獣ツめる教具による技		
受業計画	 Fi							
<u> </u>	-	週			週ごとの到達目	堙		
			12条23台 軸受とは、軸受の分類(転がり軸受・					
後期	3rdQ	1週	アル軸受・スラスト軸受) 転がり軸受(転がり軸受の寿命、寿命		軸受の原理、分類された軸受の特徴を説明できる			
		乙旭	り軸受の選定の基本)			法や寿命について説明できる。 		
			転がり軸受(転がり軸受の寿命の計算 転がり軸受の選定に関する演習	と選定の基本)	転がり軸受の選定や寿命の計算ができる。 設計条件に基づいて、転がり軸受の基本的な寿命の			
			戦がり軸叉の歴史に関する演員 ラジアル荷重とアキシャル荷重を受け	る転がり軸受	算、選定ができる。 転がり軸受の寿命においてアキシャル荷重の影響を 虚して計算できる。			
		C)E	 転がり軸受の固定方法、	J IMIV J THIX	転がり軸受の固	歌して計算できる。 がり軸受の固定方法について説明できる。		
			滑り軸受の原理と設計法 転がり軸受、滑り軸受の設計計算演習		滑り軸受の原理と設計法を説明できる。 転がり軸受、滑り軸受の特徴について説明でき、基 数が記書書等ができる。			
					的な設計計算ができる。 			
			中間試験					
	4thQ		歯車伝動の種類と特徴 歯車の強度計算、用途		歯車および歯車伝動について説明できる。			
			圏単の短及計算、用述 歯車と軸、軸受からなる系についての		幽単に J い C 説明でき、 独及なこを計算できる。 歯車と軸、軸受からなる演習を計算できる。			
		1 2 注 日	<u>圏単と軸、軸支がらなる系についての</u> ベルトとチェーン 伝動の特徴と原理、種類と使用方法	<u>/K</u>	困事と軸、軸支がつなる演音を計算とさる。 ベルトとチェーンについて説明でき、簡単な計算が きる。			
		1 2 注目	リンクとカム・クラッチとブレーキ・ 各要素の種類と特徴、計算方法	ばね				
			音安米の怪殺と特徴、可穿刀仏 機械材料の性質と種類			<u> </u>		

機械材料に求められる性質について説明できる。

14週

機械材料の性質と種類

	15)	週 機	滅的性質と試験			機械的性質について	説明でき	る。					
	16)	週 定	朝試験										
モデルコアカリキュラムの学習内容と到達目標													
分類 分野			学習内容	学習内容の到達目標			到達レベル	授業週					
		機械系分野		標準規格の意義を説明できる。		4	後1,後3,後 4,後7						
				許容応力、安全率、疲労破壊、応力集中の意味を説明できる。			4	後2,後3,後 6,後7					
				標準規格を機械設計に適用できる。			4	後1,後3,後 4,後5,後7					
			機械設計	滑り軸受の構造と種類を説明できる。		4	後1,後6,後 7						
				転がり軸受の構造、種類、寿命を説明できる。		4	後1,後2,後 3,後4,後 5,後6,後7						
				歯車の種類、各部の名称、歯型曲線、歯の大きさの表し方を説明できる。		4	後9,後 10,後11						
				すべり率、歯の切下げ、かみあい率を説明できる。		4	後9,後10						
				標準平歯車と転位歯車の違いを説明できる。		4	後9,後10						
専門的能力	分野別の専門工学		予	標準平歯車について、歯の曲げ強さおよび歯面強さを計算できる。		4	後10,後11						
				歯車列の速度伝達比を計算できる。			4	後9					
				リンク装置の機構を理解し、その運動を説明できる。		4	後13						
				代表的なリンク装置の、変位、速度、加速度を求めることができ る。			4	後13					
				カム装置の機構を理解し、その運動を説明できる。			4	後13					
				主な基礎曲線のカム線図を求めることができる。			4	後13					
			材料	機械材料に求められる性質を説明できる。		4	後14						
				金属材料、非金属材料、複合材料、機能性材料の性質と用途を説明できる。		4	後14						
				引張試験の方法を理解し、応力-ひずみ線図を説明できる。			4	後15					
				硬さの表し方および硬さ試験の原理を説明できる。		4	後15						
				脆性および靭性の意味を理解し、衝撃試験による粘り強さの試験 方法を説明できる。			4	後15					
				疲労の意味を理解し、疲労試験とS-N曲線を説明できる。		4	後15						
				機械的性質と温度の関係およびクリープ現象を説明できる。		4	後15						
評価割合													
試験					演習・レポート 合計								
総合評価割合 70				30 100		100							
基礎的能力			0		0 0								
専門的能力			70		30		100						
分野横断的制	も		0		0		0						