函館工業高等専門学校		開講年度	令和02年度 (2	(020年度)	授業科	4日 4日	設計製図 II	
科目基礎情報								
科目番号	0197			科目区分	専門	専門 / 必修		
授業形態	演習			単位の種別と単位数	数 履修	履修単位: 2		
開設学科	生産システム	工学科	対象学年	4				
開設期	通年		週時間数	2				
教科書/教材	機械設計法,	機械製図,実例	で学ぶ機械設計製	図, CADシステム	-			
担当教員	山田 誠							
到達目標								

- 1. JIS規格に基づく製図法を理解し,機械の組立図および部品図を作成できる。 2. 主要部品の強度計算をもとに新規機械を設計できる。 3. 3 D-C A Dの機能を理解し,部品モデリングおよびアッセンブリに適用できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	部品の機能を理解し,材料および 加工法を考慮して組立図および部 品図を作成できる。	JIS規格に基づく製図法により組立 図および部品図を作成できる。	組み立て図,部品図を作成できない。
評価項目2	手順に沿った強度計算に加え,加工法や製作コストを考慮して設計することができる。	手順に沿った強度計算を行い,設計書としてまとめることができる。	設計書を作成できない。
評価項目3	部品の干渉,質量計算、運動解析 など3D-CADの応用的操作を理解 し設計作業に適用できる。	3D-CADの基本的操作を理解し ,部品のモデリングとアセンブリ ができる。	3D-CADを用いてパーツをモデリ ングできない。

学科の到達目標項目との関係

函館高專教育目標 A 函館高專教育目標 B 函館高專教育目標 C 函館高專教育目標 F

教育方法等

数日乃仏寺	
概要	歯車減速機の構造、機能および各部品の強度計算法を理解し、与えられた仕様に基づいて新たな機械(本授業では歯車減速機)の設計を通して、機械設計に必要な基礎知識とCADによる設計技術を習得する。
授業の進め方・方法	事前に行う準備学習: 工学リテラシー,工学基礎実験の学習内容(特に製図および加工法),機械要素製図(寸法,公差,幾何公差の示し方),機械設計法 I (軸径の決定方法,軸受けの選定方法)を十分理解しておくこと。 学習上の留意点: 積極的そして計画的に課題に取り組むこと。 関連する科目: 工学リテラシー,工学基礎実験,機械工作法,機械工作実習 I,要素製図,機械設計法 I,材料力学,設計製図 I
注意点	課題提出状況(期限を守ること),授業に臨む姿勢を評価する。 課題は設計書,図面,CADモデルとし,それぞれ,40%,50%,10%の評価割合とする。 教育到達目標評価:試験: 20%(B:100%),課題:80%(A: 20%,B: 40%,C: 20%,F: 20%) A. 創造力と実行力 自主的に健康維持、増進を図ることができるとともに、集団の中での役割や責任を理解し、豊かな創造力でものづくりを実践できる。 B. 専門分野の基礎知識 数学,自然科学,および,これからのものづくりに必要な基礎知識を持ち,さらに,機械,電気電子,情報の各コースにおける専門分野の基礎知識を持っている。 C. 情報技術 専門技術に関する基礎知識をもとに、システム設計、制御、加工、データ処理、情報収集、プレゼンテーションなどにコンピュータ、ネットワークを活用することができる。 F. デザイン能力 コアとなる専門知識と他分野の専門知識を総合的に活用して、技術者としての課題を解決するためのエンジニアリングデザイン能力を持っている。

授業計画	<u> </u>			
		週	授業内容	週ごとの到達目標
		1週	ガイダンス(0.5h) 歯車の葉型インボリュート曲線の確認(1.5)	・授業の進め方や評価方法について理解する。 ・インボリュート曲線を理解し,それを作成できる。
		2週	歯車のモデリング	・インボリュート曲線を用いて歯車の三次元モデリン グができる。
		3週	歯車のモデリング	・インボリュート曲線を用いて歯車の三次元モデリン グができる。
前期 1stQ		4週	・各自への設計課題の指示 減速装置の構造と設計要領(JP) ・歯車列の速度伝達比の計算	・自分の減速機の構造,設計の進め方について理解する。 ・歯車列の速度伝達比を計算できる。 ・軸の強度を計算し,設計できる。
	1stQ	5週	減速装置の構造と設計要領(17) ・歯車列の速度伝達比の計算 ・軸の強度の計算 ・キーの計算,選定 ・軸受の計算,選定	・歯車列の速度伝達比を計算できる。 ・軸の強度を計算し、設計できる。 ・キーの強度を計算し、選定できる。 ・転がり軸受の構造、種類を理解し、寿命の計算ができる。 ・転位歯車を理解し計算できる。 ・すべり率、歯の切り下げ、噛み合い率を説明できる。 ・歯車の曲げ強さおよび歯面強さを計算できる。
		6週	減速装置の構造と設計要領(IP) ・歯車列の速度伝達比の計算 ・軸の強度の計算 ・キーの計算,選定 ・軸受の計算,選定 ・歯車の転位及び強度計算	・歯車列の速度伝達比を計算できる。 ・軸の強度を計算し、設計できる。 ・キーの強度を計算し、選定できる。 ・転がり軸受の構造、種類を理解し、寿命の計算ができる。 ・転位歯車を理解し計算できる。 ・すべり率、歯の切り下げ、噛み合い率を説明できる。 ・歯車の曲げ強さおよび歯面強さを計算できる。

	7	週	減速装置の構造と設計要領(37) ・歯車列の速度伝達比の計算 ・軸の強度の計算 ・キーの計算,選定 ・軸受の計算,選定 ・歯車の転移及び強度計算	・歯車列の速度伝達比を計算できる。 ・軸の強度を計算し、設計できる。 ・キーの強度を計算し、選定できる。 ・転がり軸受の構造、種類を理解し、寿命の計算ができる。 ・転位歯車を理解し計算できる。 ・すべり率、歯の切り下げ、噛み合い率を説明できる。 ・歯車の曲げ強さおよび歯面強さを計算できる。
	8	週	減速装置の構造と設計要領(コア) ・歯車列の速度伝達比の計算 ・軸の強度の計算 ・キーの計算,選定 ・軸受の計算,選定 ・歯車の転移及び強度計算	・歯車列の速度伝達比を計算できる。 ・軸の強度を計算し、設計できる。 ・キーの強度を計算し、選定できる。 ・転がり軸受の構造、種類を理解し、寿命の計算ができる。 ・転位歯車を理解し計算できる。 ・すべり率、歯の切り下げ、噛み合い率を説明できる。 ・歯車の曲げ強さおよび歯面強さを計算できる。
	9)週	減速装置の構造と設計要領(17) ・歯車列の速度伝達比の計算 ・軸の強度の計算 ・キーの計算,選定 ・軸受の計算,選定 ・軸受の計算,選定	・歯車列の速度伝達比を計算できる。 ・軸の強度を計算し、設計できる。 ・キーの強度を計算し、選定できる。 ・転がり軸受の構造、種類を理解し、寿命の計算ができる。 ・転位歯車を理解し計算できる。 ・すべり率、歯の切り下げ、噛み合い率を説明できる。
	1	.0週	機の主要部の設計を行うことができる。 ・図面の役割と種類を理解できる。 ・線の種類と用途を説明できる。 ・線の種類と用途を説明できる。 ・品物の投影図を正確に書くことができる。 ・ 製作図の書き方を理解できる。 ・ 図形を正しく書くことができる。 ・ 図形に寸法を記入することができる。 ・ でADシステムの役割と構成を説	・各自に与えられた設計仕様を満たすように歯車減速機の主要部の設計を行うことができる。 ・図面の役割と種類を理解できる。 ・線の種類と用途を説明できる。 ・品物の投影図を正確に書くことができる。
	1	1週	設計計算書の作成と基本計画図の作成 (Jア)	・各自に与えられた設計仕様を満たすように歯車減速機の主要部の設計を行うことができる。 ・図面の役割と種類を理解できる。 ・線の種類と用途を説明できる。 ・品物の投影図を正確に書くことができる。 ・製作図の書き方を理解できる。 ・図形を正しく書くことができる。 ・図形にするとができる。 ・CADシステムの役割と構成を説明できる。 ・CADシステムの基本機能を理解し、利用できる。
2	ndQ 1	2週	設計計算書の作成と基本計画図の作成 (J7)	・各自に与えられた設計仕様を満たすように歯車減速機の主要部の設計を行うことができる。 ・図面の役割と種類を理解できる。 ・線の種類と用途を説明できる。 ・品物の投影図を正確に書くことができる。 ・製作図の書き方を理解できる。 ・図形を正しく書くことができる。 ・図形に式法を記入することができる。 ・CADシステムの役割と構成を説明できる。 ・CADシステムの基本機能を理解し、利用できる。
	1	13週 設計計算書の作成と基本計画図の作成(コア)		・各自に与えられた設計仕様を満たすように歯車減速機の主要部の設計を行うことができる。 ・図面の役割と種類を理解できる。 ・ 緑の種類と用途を説明できる。 ・ 品物の投影図を正確に書くことができる。 ・ 製作図の書き方を理解できる。 ・ 図形を正しく書くことができる。 ・ 図形に寸法を記入することができる。 ・ CADシステムの役割と構成を説明できる。 ・ CADシステムの基本機能を理解し、利用できる。
	1	.4週	設計計算書の作成と基本計画図の作成 (コア)	・各自に与えられた設計仕様を満たすように歯車減速機の主要部の設計を行うことができる。 ・図面の役割と種類を理解できる。 ・線の種類と用途を説明できる。 ・ 品物の投影図を正確に書くことができる。 ・ 製作図の書き方を理解できる。 ・ 図形を正しく書くことができる。 ・ 図形を正しく書くことができる。 ・ 区科システムの役割と構成を説明できる。 ・ CADシステムの基本機能を理解し、利用できる。
	1	.5週	試験	歯車, 軸径に関して基本的事項を理解し計算できる。 製図規則(はめあい, 表面粗さ, 幾何公差)を理解して 図面に適用できる。
	1	.6週		

		1週		設計 (37)	・各自に与えられた設計仕 機の主要部の設計を行うこ。 ・図面の役割と種類を理解 ・総の推類と用途を説明で ・品物の投影図を正確に書 ・製作図の書き方を理解で ・図形を正しく書くことが ・図形に寸法を記入するこ。 ・CADシステムの役割と構 ・CADシステムの基本機能				5.	
		2週	2週		計画と部品図の	の作成 (コア)	・歯車減速装置の部品図を作成できる。 ・公差と表面性状の意味を理解し、図示することができる。 ・歯車の図面を作成できる。 ・歯車が図面を作成できる。 ・歯車減速装置の部品図を作成できる。 ・公差と表面性状の意味を理解し、図示することができる。 ・歯車の図面を作成できる。			
		3週		詳細語	計画と部品図の	の作成 (ユア)				
	3rdQ	4週		設計力	 力の育成		・自然界における形状・色彩を観察し、人間に与える情報を識別できる。 ・			
		5週			計画と部品図の	の作成 (17)				
後期		6週		詳細語	計画と部品図の	の作成 (コア)	・歯車減速装置の部品図を作 ・公差と表面性状の意味を理 きる。 ・歯車の図面を作成できる。	:成できる。 !解し、図示す	こることがで	
		7週	7週		計画と部品図の	の作成 (コア)	・歯車減速装置の部品図を作 ・公差と表面性状の意味を理 きる。 ・歯車の図面を作成できる。	:成できる。 解し、図示す	ることがで	
		8週		詳細語	計画と部品図の	の作成 (コア)	・ ・ ・ ・		ることがで	
		9週		詳細語	羊細計画と部品図の作成 (コア)		・協車が返回で下級できる。 ・協車減速装置の部品図を作成できる。 ・公差と表面性状の意味を理解し、図示することができる。 ・歯車の図面を作成できる。			
		10ì	11週 組立		図の作成 (コラ	")	歯車減速装置の組立図を作成	できる。		
		11ì			1立図の作成 (17)		歯車減速装置の組立図を作成 設計内容を整理し、計算書と		ことができ	
	4thQ	12ì	<u>周</u>	設計	計計算書の仕上げ (コア)		る。			
		13ì	13週 設		計算書の仕上	ず (37)	設計内容を整理し、計算書と る。	:してまとめる	ことかでき	
		14週 15週		課題技	是出(2h)		課題の不備を理解し修正でき	·る。		
		16ì		修正	 課題の提出(2l			 きる。		
モデル ^ー	' 1アカリキ			•	内容と到達	·	INVESTIGATION CC			
分類			分野		学習内容	学習内容の到達目標		到達レベル	授業週	
						図面の役割と種類を適用できる。		4		
						線の種類と用途を説明できる。		4		
						物体の投影図を正確にかくことがで		4	<u> </u>	
						製作図の書き方を理解し、製作図を		4	_	
					生山口	公差と表面性状の意味を理解し、図		4	 	
					製図	部品のスケッチ図を書くことができ		4		
						CADシステムの役割と基本機能を理 ボルト・ナット、軸継手、軸受、歯		4		
						ボルト・ナット、軸継手、軸受、歯車などの機械要素の図面を付成できる。 歯車減速装置、手巻きウインチ、渦巻きポンプ、ねじジャッキがとを題材に、その主要部の設計および製図ができる。		4	前2,前3,前5,前6,前	
専門的能力	分野別 <i>の</i> 門工学	D専	専機械系分野			標準規格の意義を説明できる。		4	7,前8,前9 前4,前5,前 6,前7,前 8,前9,後11	
						許容応力、安全率、疲労破壊、応力	集中の意味を説明できる。	4	前9	
						標準規格を機械設計に適用できる。		4		
						ねじ、ボルト・ナットの種類、特徴、用途、規格を理解し、適用できる。		4	前9	
					 機械設計	Cea。 ボルト・ナット結合における締め付	 けトルクを計算できる。	4	前9	
					ボルトに作用するせん断応力、接触		4	前9		
						軸の種類と用途を理解し、適用でき		4	前9	
						軸の強度、変形、危険速度を計算で		4	前9	
						キーの強度を計算できる	1	前口		

キーの強度を計算できる。

軸継手の種類と用途を理解し、適用できる。

滑り軸受の構造と種類を説明できる。

4

4

4

前9

前9

前9

				転がり軸受の構造、	種類、寿命を説明	引できる。		4	前9	
				歯車の種類、各部のできる。	の名称、歯型曲線、	歯の大きさの表し	,方を説明	4	前9	
				すべり率、歯の切っ	下げ、かみあい率を	注説明できる。		4	前9	
				標準平歯車と転位は	歯車の違いを説明で	ごきる 。		4	前9	
	標準平歯車について、歯の曲げ強さおよび歯面強さを計算できる。							4	前9	
				歯車列の速度伝達し	北を計算できる。			4	前9	
				リンク装置の機構を	を理解し、その運動	かを説明できる。		4		
		代表的なリンク装置の、変位、速度、加速度を求めることができる。					4			
				力ム装置の機構を理解し、その運動を説明できる。						
				主な基礎曲線のカム線図を求めることができる。						
評価割合										
	試験		発表	相互評価	態度	ポートフォリオ	課題	î	 }計	
総合評価割合			0		0	0	80		.00	
基礎的能力	0 0		0	0	0	0	0)	
専門的能力	20 0		0	0	0	60		30		
分野横断的能力	0		0	0	0	0	20	2	20	·