羽食		 穿専門学校	 開講年度 令和05年度 (2	2023年度)		電気電子数学 I				
科目基			(-	,		. —				
科目番号		0204		科目区分	専門 / 必修					
授業形態		授業		単位の種別と単位数						
開設学科			マイス	対象学年	4					
開設期		前期		週時間数	2					
教科書/教	 牧材	一色 秀志	夫 , 塩川 高雄、共著「微分方程式・ラン	プラス変換・フーリエ	解析—電気電	子数学入門」(オーム社)				
担当教員		中津川 征								
到達目	 標									
1.一階の	常微分方程常微分方程	式の基本形を	理解し、基礎的な問題を解くことがで 理解し、基礎的な問題を解くことがで 電気回路の応答解析等に応用できる。	きる。 きる。						
ルーブ	リック									
			理想的な到達レベルの目安	標準的な到達レベル	の目安	未到達レベルの目安				
評価項目	1		一階の常微分方程式の基本形を理解し、一般解の導出法を習得し、 種々の問題を解くことができる。	一階の常微分方程式 解し、基礎的な問題 できる。	を解くことが	一階の常微分方程式の基本形を理解せず、基礎的な問題を解くことができない。				
評価項目	2		二階の常微分方程式の基本形を理解し、一般解の導出法を習得し、 種々の問題を解くことができる。	二階の常微分方程式 解し、基礎的な問題 できる。	を解くことが 	二階の常微分方程式の基本形を理解せず、基礎的な問題を解くことができない。				
評価項目	3		各種関数のラプラス変換を導出し 、電気回路の応答解析等に応用で きる。	基礎的な関数のラプ められ、電気回路の 応用できる。						
学科の	到達目標	項目との関	[係							
函館高専	教育目標 B									
教育方	 法等									
概要		理解を容 (応用数	正学分野の専門科目には工学で頻繁に用いられる数学の基礎が使われている場合が多い。そこで、専門科目の 易にすること、さらに科学技術全般で重要な数式の取り扱いができる能力を身に付けるため工学上重要な数学 学、工業数学)を学ぶ。 内容は公知の情報のみに限定されている。							
授業の進	め方・方法	【学習上			ある。解法の	暗記ではなく、考えて答えを導くこ				
注意点		数学で勉 まれる。 JABEE教 ・課題2	「行う学習】 加強した基本的な関数の微積分ができる。 放育到達目標評価: 0%(B-1:100%) 0%(B-1:100%)	ことを確認し、問題な	く解ける場合	を除いて、しっかりとした復習が望				
授業の	属性・履ん		,							
	<u> </u>		, ☑ ICT 利用	☑ 遠隔授業対応		□ 実務経験のある教員による授業				
	, 1, 2, 2, -		E 101 49/13			□ 大小性感のの対象により文米				
授業計										
汉未 司	<u> </u>	週	授	\ _{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	ブレの到去口根	55				
		週	授業内容		週ごとの到達目標 受業計画および成績評価方法の説明					
前期		1週	ガイダンス(0.5h) 常微分方程式に向けた基礎(1.0h)		技業計画のよび放幀評価力法の説明 常微分方程式を学ぶ前提の基礎項目を確認し理解する					
		2週	◇一階常微分方程式(コア)	授美	授業計画および電子回路の特徴や応用範囲の説明					
		3週	◇変数分離形常微分方程式(コア) ◇線形微分方程式(コア) ◇完全微分方程式(コア)	一下を発生している。	変数分離形に帰着できる方程式を解くことができる 一階の線形微分方程式の基本形を理解し、基本的問 を解くことができる。 全微分を応用して一階の微分方程式を解くことがで					
	1stQ	4週	◇完全微分方程式 (コア) ◇電気回路への応用例	る 線用	全微分を応用して一階の微分方程式を解くことがで る線形微分方程式の解法に基づいて電気回路の電流や 流の時間変化を求めることができる					
		5週	二階微分方程式◇線形同次微分方程式(コア)◇線形定数係数同次微分方程式(コア)		一階の線形同次微分方程式の基本形を理解し、解法だ よび基本的定理を説明できる。 一階線形同次微分方程式の特性方程式、一般解、特殊解について理解している。					
		6週	二階微分方程式 ◇線形非同次微分方程式(コア)	非同	非同次方程式の基本形を理解し、基礎的な問題を解 ことができる。					
		7週	二階微分方程式 ◇線形非同次微分方程式(コア) ◇線形非同次微分方程式の応用	20	非同次方程式の基本形を理解し、基礎的な問題を解く ことができる。また自由振動系もしくは電気回路との 関連性について理解している。					
		8週	中間試験							
		9週	試験答案返却・解答解説 ラプラス変換	5-	間違った問題の正答を求めることができる ラプラス変換の定義および演算の線形性を理解してい ス					
	2ndQ	10週	◇定義 ◇基本的性質 ◇導関数や積分関数のラプラス変換	導機 を理	る ラプラス変換の基本的性質や変換の存在を説明できる 導関数や積分関数のラブラス変換を求めるための定理 を理解し、問題の解法に適用できる					
		11週	ラプラス変換 ◇常微分方程式のラプラス変換による ◇電気回路の過渡応答解析	解法 るこ	定数を係数とする線形常微分方程式をラプラス図ることを理解し問題の解法に応用できる。 ラプラス変換を電気回路の過渡応答解析に利用で					

		12)	周	ラプラス変換 ◇特殊関数のラプラス変換 ◇常微分方程式のラブラス変換による解法 ◇電気回路の過渡応答解析				ステップ関数およびデルタ関数等の特殊関数のラプラ ス変換を求められる ラプラス変換を電気回路の過渡応答解析に利用できる					
	13週				ラス逆変換 株関数のラプラ 微分方程式のラ ごサイド展開い	ステップ関数およびデルタ関数等の特殊関数のラプラス逆変換を求められる ラプラス逆変換にヘビサイド展開を利用することができる							
								畳み込み積分によるラプラス逆変換を求めることができる ラプラス変換を電気回路の様々な応答解析に利用できる					
	15週 期末試験				式験								
		16週 試験答案返却・解答解説						間違った問題の正答を求めることができる					
モデルコアカリキュラムの学習内容と到達目標													
分類 分野			分野		学習内容	学習内容の到達目標					レ		
						微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解 くことができる。							
基礎的能力	数学		数学		数学	簡単な1階線形微分方程式を解くことができる。				3			
						定数係数2階斉次線形微分方程式を解くことができる。				3			
評価割合													
		試験	験課		 題	相互評価	態度	ポートフォリオ	その他	合計			
総合評価割合		80		20		0	0	0	0		100		
基礎的能力		0		0		0	0	0	0	0	0		
専門的能力		80		20		0	0	0	0	1	100		
分野横断的能力		0		0		0	0	0	0	0			