沙 節	日上美局も	等專門学校	──│開講年度 令和05年度 (2	2023年度)	授業科目	流体力学 I		
科目基础								
科目番号		0208		科目区分	専門 / 必何	>		
授業形態		授業		単位の種別と単位数				
開設学科		生産シス		対象学年	4			
開設期		前期		週時間数 2				
教科書/教	 対材	流体力学	: シンプルにすれば「流れ」がわかる	金原粲 監修 実教出版				
担当教員		本村 真流	4					
到達目	票							
2. 流れの 3. 流れの)損失を理解)中に置かれ	注理解し、説明でま ない説明でま なた物体に作り	月できる。 きる。 用する流体力を理解し、説明できる。					
ルーブ!	ノツク							
			理想的な到達レベルの目安	標準的な到達レベルの目安		未到達レベルの目安		
評価項目	1		理想流体の運動の数学的表現を理解し説明でき、各種保存則を導出できる。	理想流体の各種保存 、運動方程式)を理 計算に適用できる。	理解し、流れの	連続の式、運動方程式を流れの計算に適用できない。		
評価項目:	2		流れの損失を理解し説明でき、層 流の理論解析を管路の流れに適用 できる。	流れの損失を理解し 損失、速度および流 できる。	人、管路の圧力 記量計算に適用	流れの損失を考慮した管路の計算 ができない。		
評価項目:	3		物体に作用する流体力と相似則を 理解し説明でき、流体力解析に適 用できる。	物体に作用する流体抗力および揚力を記	 力を理解し、 †算できる。	物体に作用する流体力を計算できない。		
学科の発	到達日標	項目との関						
	教育目標 B							
教育方法								
	Δ 1	力学基礎	で学習する流体静力学をベースに、圧	カと速度の関係を流	つが物体に及ぼ	まカかど非圧縮性流体の運動に関す		
概要			識を学習する。なお授業内容は公知の					
 注意点		導出した に心がけ	式や単位は、単に暗記するのではなく ることが、理解をより一層深める。	、それらの表わす意味	木を、専門用語 [。]	を用いて又草として説明できるよう		
授業の原		教育到達	 目標評価 中テスト(40%)(B), 期末記	式験(40%)(B), 小テ	スト・課題(20	%)(B)		
	属性・履信		• • • • • • • • • • • • • • • • • • • •	式験(40%)(B),小テ	スト・課題(20)	%)(B)		
		修上の区分	·		スト・課題(20			
	属性・履(ティブラー:	修上の区分	• • • • • • • • • • • • • • • • • • • •	式験(40%)(B), 小テロ	スト・課題(20			
	ティブラーニ	修上の区分	·		スト・課題(20	%)(B) □ 実務経験のある教員による授業		
	ティブラーニ	修上の区分 ニング	、 □ ICT 利用	☑ 遠隔授業対応		□ 実務経験のある教員による授業		
	ティブラーニ	修上の区分	·	□ 遠隔授業対応 週 学こ こ 速定	ごとの到達目標 習意義, 授業計 とができる. 度、流れ 常流と非定常流	□ 実務経験のある教員による授業 □ 実務経験のある教員による授業 画、評価方法を理解し学習に生かす		
	ティブラーニ	修上の区分 ニング 週	□ ICT 利用 授業内容 ガイダンス (0.5h) 流れの基礎(1.0h)	□ 遠隔授業対応 週 学 こ 速定解	ごとの到達目標 習意義, 授業計 とができる. 度、流量、流れ 常流と非定常流 し説明できる。	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かす の加速度を理解し説明できる。 、流線・流跡・流脈および流管を理 解し、平面に作用する全圧力や浮力		
	ティブラーニ	修上の区分 ニング 週 1週	□ ICT 利用 授業内容 ガイダンス (0.5h) 流れの基礎(1.0h) 流れの状態(0.5h,コア)	図 遠隔授業対応 週 学こ。 速定解 圧の	ごとの到達目標 習意義, 授計 とができる、流れ 度、流ま非定常流 し説明できる。 力の計算法を理 計算に適用でき	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かす の加速度を理解し説明できる。 、流線・流跡・流脈および流管を理 解し、平面に作用する全圧力や浮力		
	ティブラーニ	修上の区分 ニング 週 1週 2週	□ ICT 利用 授業内容 ガイダンス (0.5h) 流れの基礎(1.0h) 流れの状態(0.5h,コア)	☑ 遠隔授業対応 週 学こ。速 定解 圧の 連	ごとの到達目標 習意義, 授業計 とができる. 流れ 度、流と非定常流 し説明できる。 力の計算法を理 計算に適用でき 続の式を理解し	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かすの加速度を理解し説明できる。 、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力る。		
	ライブラー:	修上の区分 ニング 週 1週 2週 3週	□ ICT 利用 授業内容 ガイダンス (0.5h) 流れの基礎(1.0h) 流れの状態(0.5h,コア) 圧力(2h,コア) 連続の式(2h,コア)	□ 遠隔授業対応 週 学こを定解 圧の 連 オベカ	ごとの到達目標 習意義, きる、流れ 度が、流き量、で量、で量 が流きででででででである。 ででででである。 ででででである。 でででででできる。 ででででできる。 でででできる。 ででできる。 できる。	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かすの加速度を理解し説明できる。、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力る。 管内流れの流量計算に適用できる。 程式を理解し説明できる。 を理解し、管内流れの流速および圧る。		
授業計區	ライブラー:	修上の区分 ニング 週 1週 2週 3週 4週	□ ICT 利用 授業内容 ガイダンス (0.5h) 流れの基礎(1.0h) 流れの状態(0.5h,コア) 圧力(2h,コア) 連続の式(2h,コア) オイラーの運動方程式(2h,コア)	□ 遠隔授業対応 週 学こ速定解 圧の 連 オベカ ピの	ごとの到達目標 習意義で記述を 要が、流とまで でいる、 でいる、 でいる、 でいる、 でいる。 でいる。 でいる。 では、 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かす の加速度を理解し説明できる。、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力る。 管内流れの流量計算に適用できる。 程式を理解し説明できる。 を理解し、管内流れの流速および圧る。 イス、ベンチュリ管などベルヌーイび流量測定に適用できる。		
授業計画	ライブラー:	修上の区分 ニング 週 1週 2週 3週 4週 5週 6週 7週	□ ICT 利用	□□遠隔授業対応 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	ごとの到達目標 習意義で記述を 要が、流とまで でいる、 でいる、 でいる、 でいる、 でいる。 でいる。 でいる。 では、 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かす の加速度を理解し説明できる。 、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力 る。 管内流れの流量計算に適用できる。 程式を理解し説明できる。 を理解し、管内流れの流速および圧 る。 イス、ベンチュリ管などベルヌーイび流量測定に適用できる。 解し、噴流が衝突する平板に作用す		
授業計區	ライブラー:	修上の区分 ニング 週 1週 2週 3週 4週 5週 6週	授業内容 ガイダンス (0.5h) 流れの基礎(1.0h) 流れの状態(0.5h,コア) 圧力(2h,コア) 連続の式(2h,コア) オイラーの運動方程式(2h,コア) ベルヌーイの定理(2h,コア) ベルヌーイの定理の応用(2h,コア)	□□遠隔授業対応 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	ごとの到達目標	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かすの加速度を理解し説明できる。、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力る。 管内流れの流量計算に適用できる。程式を理解し説明できる。を理解し、管内流れの流速および圧る。イス、ベンチュリ管などベルヌーイび流量測定に適用できる。解し、噴流が衝突する平板に作用する。		
	ライブラー:	修上の区分 ニング 週 1週 2週 3週 4週 5週 6週 7週	□ ICT 利用	□□遠隔授業対応 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	ご との 到達 目標 目標 計 と 度	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かす の加速度を理解し説明できる。 、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力 る。 管内流れの流量計算に適用できる。 程式を理解し説明できる。 を理解し、管内流れの流速および圧 る。 イス、ベンチュリ管などベルヌーイび流量測定に適用できる。 解し、噴流が衝突する平板に作用する. た箇所の正答を理解できる。		
授業計區	ライブラー:	修上の区分 ニング 週 1週 2週 3週 4週 5週 6週 7週 8週 9週	□ ICT 利用	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	ご習とを高いた。 理き しから 理き えい できます との 到達 達 関係 できる	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かす の加速度を理解し説明できる。 、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力 る。 管内流れの流量計算に適用できる。 程式を理解し説明できる。 を理解し、管内流れの流速および圧 る。 イス、ベンチュリ管などベルヌーイび流量測定に適用できる。 解し、噴流が衝突する平板に作用する. た箇所の正答を理解できる。 が説明できる.流れのレイノルズ、数		
授業計画	ライブラー:	修上の区分 ニング 週 1週 2週 3週 4週 5週 6週 7週 8週 9週	□ ICT 利用	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	ごとのうない。 できない できない できない できない できない できない できる	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かす の加速度を理解し説明できる。、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力 る。 管内流れの流量計算に適用できる。 程式を理解し説明できる。 を理解し、管内流れの流速および圧る。 イス、ベンチュリ管などベルヌーイび流量測定に適用できる。 イズ流量測定に適用できる。 が流量減が衝突する平板に作用する. た箇所の正答を理解できる。 が説明できる.流れのレイノルズ、数		
授業計画	ライブラー <u>:</u> 画	修上の区分 ニング 週 1週 2週 3週 4週 5週 6週 7週 8週 9週	□ ICT 利用	□ 遠隔授業対応 □ □ 学ご速定解 圧の連 オベカピの 運る 中 乱が 乱い 層・	ごとのうない。 では、	□ 実務経験のある教員による授業 画,評価方法を理解し学習に生かす の加速度を理解し説明できる。、流線・流跡・流脈および流管を理解し、平面に作用する全圧力や浮力る。 管内流れの流量計算に適用できる。 程式を理解し説明できる。 を理解し、管内流れの流速および圧る。 イス、ベンチュリ管などベルヌーイび流量測定に適用できる。 解し、噴流が衝突する平板に作用する。		

		 13週	物体	物体の抵抗と翼(2h,コア)		循環と揚力発生機構について理解し,説明できる. 翼に生じる流体力を,抗力係数・揚力係数を用いて計			
	14週 15週		יאין נוויר			異に生しる流体力を,抗力係致・揚力係致を用いて計 算できる.			
			相似法	以法則と次元解析(2h)		相似法則と次元解析を理解し説明でき,簡単な関係式を導出できる.			
			前期期末試験						
			期末記	期末試験の解答解説(2h))	期末試験の間違えた箇所の正答を理解できる。		:る。
モデルコアカリキュラムの学習内容と到達目標									
分類			学習内容 学習		学習	- 関内容の到達目標		到達レベル	授業週
					流体の定義と力学的な取り扱い方を理解し、適用できる。		4	前1	
					流体の性質を表す各種物理量の定義と単位を理解し、適用できる。		4	前1	
					ニュートンの粘性法則、ニュートン流体、非ニュートン流体を説 明できる。		4	前1	
					絶対圧力およびゲージ圧力を説明できる。		4	前1,前2	
					パスカルの原理を説明できる。		4	前1,前2	
					液柱計やマノメーターを用いた圧力計測について問題を解くことができる。		4	前1,前2	
					平面や曲面に作用する全圧力および圧力中心を計算できる。		4	前2	
					物体に作用する浮力を計算できる。		4	前2	
					定常流と非定常流の違いを説明できる。		4	前1	
	分野別の	車 1416 1 1 1 2 7	- // m=		流線と流管の定義を説明できる。		4	前1	
専門的能力	分野別の! 門工学	八人 機械系	於分野		連続の式を理解し、諸問題の流速と流量を計算できる。		4	前3	
					オイラーの運動方程式を説明できる。		4	前4	
					ベルヌーイの式を理解し、流体の諸問題に適用できる。		4	前5,前6	
					運動量の法則を理解し、流体が物体に及ぼす力を計算できる。		4	前7	
					層流と乱流の違いを説明できる。		4	前10,前11	
					レイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用できる。		4	前10,前11	
					ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。		4	前10,前11	
					ムーディー線図を用いて管摩擦係数を求めることができる。		4	前10,前11	
					境界層、はく離、後流など、流れの中に置かれた物体の周りで生 じる現象を説明できる。		4	前12,前13	
					抗力について理解し、抗力係数を用いて抗力を計算できる。		4	前12,前13	
					揚力について理解し、揚力係数を用いて揚力を計算できる。		4	前12,前13	
評価割合									
中テスト		期末試験		期末試験	小テスト・課題	計			
総合評価割合 40			10			40	20 1	00	
基礎的能力			0			0	0 0	1	
専門的能力			40			40	20 1	00	
分野横断的能力		0	0			0	0 0		