函館		 事門学校	開講年度 令和05年度 (2	2023年度)	授業科目	機械工学実験Ⅱ			
科目基础		<u> </u>		2023-12)					
科目番号		0226		科目区分 専門		必修			
授業形態			7명	単位の種別と単位					
開設学科		実験・実	<u> </u>	対象学年	5	· -			
開設期		前期) AI 141	週時間数	4				
教科書/教	─────────────────────────────────────		で用意する実験テキスト等	Zeri liuxx					
担当教員			直,山田 誠,剱地 利昭,川合 政人						
<u> </u>			2,444 50,775-6 13-6,7114 50,77						
1. 各実態 2. 実験・	・ 実習の心得	を理解して	、関連する授業で修得した知識を応用いる. いる. めることができ, 口頭でも説明できる.		5.				
ルーブ!	リック								
			理想的な到達レベルの目安	標準的な到達レク	<u> </u>	未到達レベルの目安			
評価項目1			各実験テーマの内容を理解し、関連する授業で修得した知識を応用しながら他者に説明できる。	各実験テーマの内 った実験内容を他	P容を理解し、行 地者に説明できる	左記ができない			
評価項目2			実験の目標を理解し、安全に実験を行うことができる.	実験の心得を理解ためにすべきこと	<u>:がわかる.</u>	実験の心得を理解せず,安全に実験を行うことができない.			
評価項目3			実験のデータをレポートにまとめ , 結果についての考察をまとめる ことができる.	実験のデータをし , 結果について る.	ンポートにまとめ きえることができ	実験の内容をレポートにまとめることができない.			
学科の発	到達目標耳	頁目との関	係						
函館高専	教育目標 A	函館高専教育	育目標 B 函館高専教育目標 E 函館高専	教育目標 F					
教育方法	法等								
概要		※実務と この科 発手法な なお授	C学に関連した実験を正確に行い,実験報告書を書くことによって実験方法,実験結果を纏める能力を養う. 8との関係 D科目は空港設備に関する機器設計を担当していた教員が,その経験を活かし,企業におけるグループでの製品 ななどについてを実習形式で授業を行うものである。 対策では公知の情報のみに限定されている。						
授業の進め方・方法		1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (指導教員がレポートで評価する.材料実験25%,熱工学実験25%,流体実験25%,計測実験25%. 施方法: クラスを4班に分け、各実験室を3週毎にローテーションする.						
注意点		(B) 専門 (B-4) 類 (E) 技術 (F) 問題 最適な解	ら力と実行力を持った技術者 門技術に関する基礎知識を持った技術者 影験や実習, 演習を通して専門工学における実践的な 診的成果を正確な日本語を用いて論理的な文書にまとめることができる。 資解決のためにデータに基づいた工学的な考察を行い, 複数の解決手法を考案し, それらを評価してその中から 決策を提案できる。 育到達目標評価:レポート100%(A-2:20%, B-3:20%, B-4:20%, E-2:20%, F-2:20%)						
授業の原	属性・履備	多上の区分		,		,			
	<u>ライブラー</u> ティブラーコ		☑ ICT 利用	□ 遠隔授業対応		☑ 実務経験のある教員による授業			
	<i>,</i> 122 =		E 101 (1971)		·	日人が相談のの対象にある技術			
授業計画	面								
		週	授業内容			<u> </u>			
		1週	ガイダンス(4h)		・本授業の概要を理解し、各実験での安全に関する注意事項を把握する。				
前期		2週	I 材料実験 1) ひずみ測定と構造解析(4h)		担当: 古俣教員 ・ひずみゲージによるひずみ測定法と FEM による構造解析を理解する.				
	1stQ	3週	I 材料実験 2) 金属材料の組織観察(4h)		担当: 古俣教員 ・金属顕微鏡を用 属組織との関連を	引いて金属表面を観察し, 熱処理と金			
		4週	I 材料実験 3) 析出粒子の定性定量分析(4h)		担当: 古俣教員 ・EPMAを用いて を行い, エネルキ る.	₹ 金属表面の析出粒子の定性定量分析 ドー分散型X線分光法について理解す			
		5週	Ⅱ 熱工学実験 1) 熱伝導率の測定(4h)		担当: 川合教員 ・金属材料の熱伝導率の測定を理解し,基礎知識と技 術を身につける.				
		6週	II 熱工学実験 2) 図示仕事の測定(4h)		担当: 川合教員 ・熱機関の図示仕事の測定方法を理解し,基礎知識と 技術を身につける.				
		7週	II 熱工学実験 3) 比熱の測定(4h)		担当: 川合教員・比熱の測定方法を理解し,基礎知識と技術を身につける.				
		8週	追実験,レポート指導(4h)						
	2ndQ	9週	Ⅲ 流体実験 1)CFD実験(数値シュミレーションに の流れ解析) (8h)	よる円柱まわり	担当: 剱地教員 ・コンピュータを利用し,流れの数値計算を行う.流 れ場を実験値や文献値と比較考察する.				

		10週	1)CF	流体実験 FD実験(数値 れ解析)(8h	シュミレーション)	による円柱まわり	担当: 剱地教員 ・コンピュータを れ場を実験値やな	員 を利用し, 流れの 文献値と比較考察	数値計算を行う. 流する.		
		11週		流体実験 沸騰熱伝達実	『験(4h)		担当: 剱地教員・水中に置かれる。		沸騰熱伝達を理解す		
		12週	2週 IV 計測実験 1) 球面の評価 (4h)					担当: 山田誠教員 ・三次元測定機で加工物を測定し,最小二乗法により 球面を同定することができる。			
		13週	IV 1	計測実験 平面の評価(4h)		担当: 山田誠教員 ・三次元測定機で平面を測定し,その幾何関係を求め ることができる。				
	14週	IV 1	計測実験 加工面の評価	(4h)		担当: 山田誠教員 ・ボールエンドミルでの加工面を測定し,その加工面 の断面形状を評価できる。					
	15週 追			験,レポート	 指導(4h)						
	16週 追実験, レポート指導 (4h)										
エデルコ	アカリ	リキュラバ	の学習	内容と到達	*************************************		•				
分類	モデルコアカリキュラムの ⁹ _{分類}			学習内容					シングル 授業週		
評価割合	·	1/52	-	1 2 111 311	1 2 3 3 3			123.			
		試験多		 表	相互評価	態度	実技	レポート	合計		
総合評価割合		0 0			0	0	0	100	100		
基礎的能力		0 0			0	0	0	0	0		
専門的能力		0 (0	0	0	100	100		
分野横断的能力		0 0			0	0	0	0	0		