####################################	函館	工業高等	専門学校	開講年度	平成30年度 (2	2018年度)	授	業科目	機械工学実験 Ⅱ	
要素形態 実験・実習 甲位の種別と単位数 展修単位: 2 開設学科 生産システム工学科 対象学年 5 開設学科 各家検室で用意する実験デキスト 9 現時間数 4 というできる。 2 実験の一個音を開している。とができ、口頭でも説明できる。 3 実験の「相談を 1 というできる。 3 実験の「相談を 1 というできる。 3 実験の「相談を 1 というできる。 3 実験の「相談を 1 というできる。 4 実験の「相談を 1 というできる。 4 実験の「相談を 1 というできる。 5 実験の「相談を 1 というできる。 5 実験の「相談を 1 というできる。 6 実験の「日本を 1 というできる。 7 またの「日本を 1 というできる。 8 またの「日本を 1 というできる。 9 またの「日本を 1 というできる。 8 またのできる。 8 またのできる。 8 またのできる。 8 またのできる。 8 また	科目基礎	情報								
超野神 生産システム工学科 対象学年 5 1 1 1 1 1 1 1 1 1	斗目番号				科目区分 専門 / 必修			修		
超期						単位の種別と単位数 履修単位: 2			: 2	
製料主角数月				ステム工学科						
選挙			_			週時間数 4				
連目標		·才								
・ 名実験デーマの内容を理解し、間連する授業で修得した知識を応用し他者に説明できる。			浜 克己,	近藤 司,古俣 和直,/	合 政人					
理想的な到達レベルの目安 標準的な到達レベルの目安 表実験テーマの内容を理解し、	. 各実験 2. 実験・	テーマの内 実習の心得	を理解して	いる.		」他者に説明できる	3.			
平価項目1	レーブリ	ック								
連する授業で條得した知識を応用 しなができない しなができない しなができない しなができない しなができない 実験の目標を理解し、安全に実験 実験の心得を理解し、安全体保の 大きについてきる。 実験の心得を理解し、安全体保の 大きについての考察をまとめる ことができる。 実験のデータをレポートにまとめ , 結果についてある家をまとめる ことができる。 実験のデータをしポートにまとめ , 活果についてあるのできる。 実験のデータをしポートにまとめ , 活果について考えることができない. 実験の内容をレポートにまとめ , 活果について考えることができない. 実験の戸室を担ポートにまとめ , 活果について考えることができない. 実験の戸室を担ポートにまとめ , 活果について考えることができない. 実験の戸室を担ポートにまとめ , 活果について考えることができない. 実験の声音を関密				理想的な到達レ	理想的な到達レベルの目安		標準的な到達レベルの目安		未到達レベルの目安	
大学科の到達目標項目との関係 実験のデータをレポートにまとめ。	平価項目1			連する授業で修	連する授業で修得した知識を応用					
A結果についての考察をまとめる	評価項目2			実験の目標を理を行うことがで	実験の目標を理解し、安全に実験		実験の心得を理解し,安全確保のためにすべきことがわかる.			
数音方法等 機械工学に関連した実験を正確に行い、実験報告書を書くことによって実験方法、実験結果を纏める能力を養う 学習上の留意点: 1)実験はテーム単位の実施となるので一員としての役割と責任を理解して自主的に行動する。 2)工学験の目的 レポート形式や提出方法、採点基準などを十分に理解して行う。 3)講義と実験の何機的な関連について智慧して行う。 4)欠席・欠課はレポート内容の大きな減点に繋がり、時には単位不認定となるので、絶対にしないようにする。 24 分欠席・欠課はレポート内容の大きな減点に繋がり、時には単位不認定となるので、絶対にしないようにする。 25 石揚導教員がレポート内容の大きな減点に繋がり、時には単位不認定となるので、絶対にしないようにする。 26 名揚導教員がレポートで評価する。材料実験25%、機械制御実験25%、機械で方法・名指導教員がレポートで評価する。 27 テームの一員としての役割と責任を理解して自主的に行動できる。 (A-2) チームの一員としての役割と責任を理解して自主的に行動できる。 (B-3) 主となる専門分野の基礎知識、あたびそれらと得合するための他の専門分野の基礎知識を持っている。 (B-4) 実験や実習、演習を提出して専門工学における実践的な基礎技術を身につけている。 (B-4) 実験や実習、演習を担助する。 (E-2) 技術的成果を正確な日本語を用いて論理的な文書にまとめることができる。 (E-2) 技術の成果を正確な日本語を用いて論理的な文書にまとめることができる。 (E-2) 財務の成果を正確な日本語を用いて声理のな考察を行い、複数の解決手法を考案し、それらを評価して・お最適な解決策を提案できる。 (B-3) 本と教育・主を考案し、それらを評価して・お最適な解決策を提案できる。 (B-3) 本と教育・主を考案し、それらを評価して・お最適な解決策に表める。 (B-4) 実験や実習、演習を提供を導て事る。 (B-3) オイダンス(4h) 第項を把握する。 1週 だ業網の熱処理(4h) 第項を把握する。 1月 材料実験 1月 オイ教主の 1月 は 1日 は	評価項目3			, 結果について	, 結果についての考察をまとめる		, 結果について考えることができ		天殿の内台でレハートによこのる	
数音方法等 機械工学に関連した実験を正確に行い、実験報告書を書くことによって実験方法、実験結果を纏める能力を養う 学習上の留意点: 1)実験はテーム単位の実施となるので一員としての役割と責任を理解して自主的に行動する。 2)工学験の目的 レポート形式や提出方法、採点基準などを十分に理解して行う。 3)講義と実験の何機的な関連について智慧して行う。 4)欠席・欠課はレポート内容の大きな減点に繋がり、時には単位不認定となるので、絶対にしないようにする。 24 分欠席・欠課はレポート内容の大きな減点に繋がり、時には単位不認定となるので、絶対にしないようにする。 25 石揚導教員がレポート内容の大きな減点に繋がり、時には単位不認定となるので、絶対にしないようにする。 26 名揚導教員がレポートで評価する。材料実験25%、機械制御実験25%、機械で方法・名指導教員がレポートで評価する。 27 テームの一員としての役割と責任を理解して自主的に行動できる。 (A-2) チームの一員としての役割と責任を理解して自主的に行動できる。 (B-3) 主となる専門分野の基礎知識、あたびそれらと得合するための他の専門分野の基礎知識を持っている。 (B-4) 実験や実習、演習を提出して専門工学における実践的な基礎技術を身につけている。 (B-4) 実験や実習、演習を担助する。 (E-2) 技術的成果を正確な日本語を用いて論理的な文書にまとめることができる。 (E-2) 技術の成果を正確な日本語を用いて論理的な文書にまとめることができる。 (E-2) 財務の成果を正確な日本語を用いて声理のな考察を行い、複数の解決手法を考案し、それらを評価して・お最適な解決策を提案できる。 (B-3) 本と教育・主を考案し、それらを評価して・お最適な解決策を提案できる。 (B-3) 本と教育・主を考案し、それらを評価して・お最適な解決策に表める。 (B-4) 実験や実習、演習を提供を導て事る。 (B-3) オイダンス(4h) 第項を把握する。 1週 だ業網の熱処理(4h) 第項を把握する。 1月 材料実験 1月 オイ教主の 1月 は 1日 は	 学科の到	達目標項	目との関]係		•				
機構工学に関連した実験を正確に行い、実験報告書を書くことによって実験方法、実験結果を纏める能力を養色で置して行う。 1)実験はチーム単位の実施となるので一員としての役割と責任を理解して自主的に行動する。 2) 工学実験の目的、レボート形式や提出方法、採点基準などを十分に理解して行う。 31 蕭義と実験の有機的な関連について図憶して行う。 4)欠席・欠課はレボート内容の大きな減点に繋がり、時には単位不認定となるので、絶対にしないようにする評価方法、そ指導教員がレボートで評価する、材料実験25%、機械制御実験25%、熱工学実験25%、機械工作実験25%、接施方法: クラスを4 班に分け、各実験室を3 週毎にローテーションする。 (A-2) チームの一員としての役割と責任を理解して自主的に行動する。 (B-3) 主となる専門分野の基礎知識、およびそれらと複合するための他の専門分野の基礎知識を持っている。(B-4) 実験か実際 済豊道して専門工学における実践的な基礎技術を身につけている。(B-4) 実験が実際 万に基づいた工学的な考察を行い、複数の解決手法を考案し、それらを評価してら最適な解決検を提案できる。 JABEE教育到達目標評価:レボート100%(A-2:20%, B-3:20%, B-4:20%, E-2:20%, F-2:20%) 受業計画					対育目標 E 函館高専	教育目標 F				
機械工学に関連した実験を正確に行い、実験報告書を書くことによって実験方法、実験結果を纏める能力を養き 学習上の留意点: 1 実験はオーム単位の実施となるので一員としての役割と責任を理解して自主的に行動する。 2) 工学実験の目的、レボート形式や提出方法、採点基準などを十分に理解して行う。 3) 講義と実験の自機的な関連について留意して行う。 4) 欠席・欠課はレボート内容の大きな滅点に繋がり、時には単位不認定となるので、絶対にしないようにする 音指導教員がレボートで評価する。材料実験25%、機械制御実験25%、熱工学実験25%、機械工作実験25%、 技施方法: クラスを4班に分け、各実験室3週毎にローデーションする。 (A-2) チムの一員としての役割と責任を理解して自主的に行動する。名指導教員がレボートで評価する。材料実験25%、機械制御実験25%、熱工学実験25%、機械工作実験25%。接施方法: クラスを4班に分け、各実験室3週毎にローデーションする。(B-3) まとなる専門分野の基礎知識、およびそれらと複合するための他の専門分野の基礎知識を持っている。(B-3) まとなる専門分野の基礎知識を持っている。(B-3) まとなる専門分野の基礎知識を持っている。(E-2) 技術的放果を正確な日本語を用いて論理的な文書にまどめることができる。(E-2) 技術を削減を提案できる。JABEE教育到達目標評価:レボート100% (A-2:20%, B-3:20%, B-4:20%, E-2:20%, F-2:20%) 受業計画										
学習上の留意点: 1)実験はチーム単位の実施となるので一員としての役割と責任を理解して自主的に行動する. 2)工学実験の目的、レボート形式や提出方法、採点基準などを十分に理解して行う. 3)講義と実験の有機的な関連について留意して行う。 4)欠席、欠課はレボート内容の大きな減点に繋がり、時には単位不認定となるので、絶対にしないようにする。			機械工学		 E確に行い, 実験報	告書を書くことに	よって	 実験方法,	実験結果を纏める能力を養う。	
(B-3) 主となる専門分野の基礎知識, およびそれらと複合するための他の専門分野の基礎知識を持っている。 (B-4) 実験や実習, 演習を通して専門工学における実践的な基礎技術を身につけている。 (E-2) 技術的成果を正確な日本語を用いて論理的な文書にまとめることができる。 (F-2) 問題解決のためにデータに基づいた工学的な考察を行い, 複数の解決手法を考案し, それらを評価してら最適な解決策を提案できる。	受業の進め	方・方法	2)工学 3)講 4)欠馬 評価方法 各指導教 実施方法	学実験の目的, レポー をと実験の有機的なほ ち・欠課はレボートが も: 対員がレポートで評値 も: クラスを4班に	- ト形式や提出方法, 関連について留意し 内容の大きな減点に 晒する. 材料実験25 こ分け、各実験室を	,採点基準などをで て行う. 繋がり,時には単 [/] %,機械制御実験 3週毎にローテー:	十分に 位不認 25%, ション	理解して行 定となるの 熱工学実験 する.	う. pで, 絶対にしないようにする.	
週 授業内容 週ごとの到達目標			(B-3) (B-4) (E-2) (F-2) ら最適な	主となる専門分野の 実験や実習,演習を 技術的成果を正確な 問題解決のためにデ は解決策を提案できる	基礎知識,およびそ 通して専門工学にお 日本語を用いて論理 ータに基づいた工学 3。	されらと複合するたける実践的な基礎的な文書にまとめ される考察を行い,	こめの化 き技術を ること 複数の	他の専門分野 を身につける かできる。 ができる。 がま手法を	ている。 ・ を考案し, それらを評価してその中: ・	
1週 ガイダンス (4h) ・本授業の概要を理解し、各実験での安全に同意事項を把握する。	受業計画	l		T						
1			週	授業内容						
I 材料実験 1) 炭素鋼の熱処理 (4h) 2) アルミニウム合金の腐食 I (4h) 3) アルミニウム合金の腐食 I (4h) 3) アルミニウム合金の腐食 I (4h) II 機械制御実験 1) アナログ/ディジタル変換 (4h) 2) ステップモータ 2 軸位置決めユニットの制御 (4h) 3) リレーシーケンス制御 (4h) 2) ステップモータ 2 軸で置決めユニットの制御 (4h) 3) リレーシーケンス制御 (4h) 3) リレーシーケンス制御 (4h)			1週	ガイダンス(4h)			意事項を把握する.			
**A / D変換用 I Cの使い方とディジタル温原組み,並びに制御方法を理解し,基礎知識と指につける. 1) アナログ/ディジタル変換(4h) 2) ステップモータ2軸位置決めユニットの制御(4h) 3) リレーシーケンス制御(4h) はるステップモータの制御方法を理解し,基項技術を身につける. ・シーケンサの動作原理とラダー図を含むシー			2週	1) 炭素綱の熱処理	里(4h) 合金の腐食 I (4h) 合金の腐食 I (4h)	・炭素鋼の熱処 性質と組織との ・アルミニウム する。 ・電子顕微鏡を		鋼の熱処理 組織との限 ミニウムを 顕微鏡を用	理法および熱処理された材料の機械関連を理解する. 合金の分極抵抗値を求める手法を習用いて腐食した試料表面を観察し,	
	前期	1stQ	3週	1) アナログ/ディ2) ステップモータ) アナログ/ディジタル変換(4h)) ステップモータ 2 軸位置決めユニットの制			・A/D変換用ICの使い方とディジタル温度計の組み,並びに制御方法を理解し,基礎知識と技術をにつける。 ・2軸制御による基本的な位置決め方法とパルス列よるステップモータの制御方法を理解し,基礎知識		

担当: 川合教員
・金属材料の熱伝導率の測定を理解し,基礎知識と技術を身につける。
・熱機関の図示仕事の測定方法を理解し,基礎知識と技術を身につける。
・熱勘定図の作成を通して,熱機関の基礎知識と計測技術を身につける。

担当: 近藤教員
・複数個の穴あけ加工を基にけがき、穴加工、および位置決め誤差を求め加工精度との関連を理解する。
・ドリル径や速度を変えたときの切削抵抗,切削動力を理解する。
・超音波探傷器による材料の非破壊試験法を理解する

4週

5週

6週

7週

IV 熱工学実験 1) 熱伝導率の測定 (4h) 2) 図示仕事の測定 (4h) 3) 熱勘定図の作成 (4h)

Ⅲ 機械工作実験 1)位置決め精度実験 2) ドリル切削実験 3) 超音波探傷実験

追実験,レポート指導(4h)

追実験,レポート指導(4h)

		8週	I 材料実験 1) 炭素鋼の熱処理(4h) 2) アルミニウム合金の腐食 I (4h) 3) アルミニウム合金の腐食 II (4h)		担当: 古俣教員 ・炭素鋼の熱処理法および熱処理された材料の機械的性質と組織との関連を理解する. ・アルミニウム合金の分極抵抗値を求める手法を習得する. ・電子顕微鏡を用いて腐食した試料表面を観察し,孔食発生機構を理解する.						
		9週	II 機械制御実験 1) アナログ/ディ: 2) ステップモータ 3)リレーシーケンフ	2軸位置決めユニ	ットの制御(4h)	担当: 浜教員 ・ A / D変換用 I ・	方法を理解し, 基本的な位置決 タの制御方法を 作原理とラダー	基礎知識と め方法と/理解し、基 図を含むら	と技術を身 パルス列に 基礎知識と シーケンサ		
	2ndQ	10週	2) 図示仕事の測定	/ 熱工学実験) 熱伝導率の測定(4h)) 図示仕事の測定(4h)) 熱勘定図の作成(4h)			担当: 川合教員 ・金属材料の熱伝導率の測定を理解し,基礎知識と技術を身につける。 ・熱機関の図示仕事の測定方法を理解し,基礎知識と技術を身につける。 ・熱動定図の作成を通して,熱機関の基礎知識と計測技術を身につける。				
		11週	Ⅲ 機械工作実験 1)位置決め精度実験 2)ドリル切削実験 3)超音波探傷実験		担当: 近藤教員 ・複数個の穴あけ加工を基にけがき、穴加工、および 位置決め誤差を求め加工精度との関連を理解する。 ・ドリル径や速度を変えたときの切削抵抗,切削動力 を理解する。 ・超音波探傷器による材料の非破壊試験法を理解する						
		12週	I 材料実験 1) 炭素鋼の熱処理(4h) 2) アルミニウム合金の腐食 I(4h) 3) アルミニウム合金の腐食 I(4h)			担当: 古俣教員 ・炭素鋼の熱処理法および熱処理された材料の機械的 性質と組織との関連を理解する. ・アルミニウム合金の分極抵抗値を求める手法を習得 する. ・電子顕微鏡を用いて腐食した試料表面を観察し,孔 食発生機構を理解する.					
		13週	I 機械制御実験 1) アナログノディジタル変換(4h) 2) ステップモータ 2 軸位置決めユニットの制御(4h) 3) リレーシーケンス制御(4h)			担当: 浜教員 ・ A / D変換用 I Cの使い方とディジタル温度計の仕組み,並びに制御方法を理解し,基礎知識と技術を身につける. ・ 2 軸制御による基本的な位置決め方法とパルス列によるステップモータの制御方法を理解し,基礎知識と技術を身につける. ・ シーケンサの動作原理とラダー図を含むシーケンサのプログラミング方法を理解し,基礎知識と技術を身につける.					
		14週	2) 図示仕事の測定	熱工学実験 熱伝導率の測定(4h) 図示仕事の測定(4h) 熱勘定図の作成(4h)			担当: 川合教員 ・金属材料の熱伝導率の測定を理解し,基礎知識と技術を身につける。 ・熱機関の図示仕事の測定方法を理解し,基礎知識と技術を身につける。 ・熱勘定図の作成を通して,熱機関の基礎知識と計測技術を身につける。				
		15週	Ⅲ 機械工作実験 1)位置決め精度実験 2) ドリル切削実験 3) 超音波探傷実験	i	担当: 近藤教員 ・複数個の穴あけ加工を基にけがき、穴加工、および 位置決め誤差を求め加工精度との関連を理解する. ・ドリル径や速度を変えたときの切削抵抗,切削動力 を理解する. ・超音波探傷器による材料の非破壊試験法を理解する						
16週 追実験, レポート指導 (4h) 16週 16											
モデルコ	アカリニ	キュラムの	学習内容と到達	目標			ı	-			
分類		分野	学習内容	学習内容の到達目	目標		到這	をレベル	受業週		
評価割合				1							
40 A ' ' ·	試	験	発表	相互評価	態度	実技	レポート	合計			
総合評価割			0	0	0	0	100	0			
基礎的能力	0		0	0	0	0	100	100			
分野横断的			0	0	0	0	0	0			
121 THENT	סן ביימיו			1,2	1	10	12				