函食		 事門学校	開講年度 平成30年度 (2	2018年度)	授業科目	応用物理特講Ⅱ				
科目基礎						·				
科目番号		0608		科目区分	専門 / j					
授業形態		授業		単位の種別と単位		立: 2				
開設学科			ステム工学科	対象学年	5					
開設期	<i>t</i> ++	前期	一元 佐田 し ナ 帰江田 昭本 の 教 科 妻	週時間数	2					
教科書/教 担当教員		2~4年 宮崎 真	で使用した物理関連の教科書 							
到達目			IX.							
1. 「熱力 2. 「熱力	カ学」, 「電 カ学」, 「電	電磁気学」に 電磁気学」に	- 現れる特徴的な物理量について,ベク -現れる物理現象を数式化(定式化)でき,	トル、微積分を用い 解析できる.	ってその定義が記	説明でき,計算できる.				
ルーブ	リック									
			理想的な到達レベルの目安	標準的な到達レベルの目安		未到達レベルの目安				
評価項目	1		複数の物理量を含んだ問題について, 微積分を用いて解くことができる.	単純な物理量を含んだ問題について,微積分を用いて計算できる.		と、「似傾力を用いた計算が悩みできない。				
評価項目	2		複数の物理法則を含んだ問題について、定式化でき、その問題を解き、解析することができる.	単純な物理法則をいて, 定式化できくことができる.	を含んだ問題にで を, その問題を施	9 単純な物理法則を含んだ問題について、定式化できない.				
学科の	到達目標項	頁目との 関	関係							
函館高専	教育目標 B									
教育方法	法等									
概要		展開する								
授業の進	め方・方法	これまで	でに学んだ物理,数学,専門科目の物理	系科目については個	8得しているも	のとして授業を行う.				
注意点		ーーし ンパ	気学の内容については全て網羅できない ソカ」,「電磁誘導」,「コイルとイン シャル」,「電磁波」,「単位系」など 教育到達目標評価:定期試験100%(B-	ダクタンスI	こ各自の必要に 交流回路」, 「	応じて自学自習で修得すること(「ロマックスウェル方程式」, 「ベクトル				
授業計	画		.							
		週	授業内容		週ごとの到達目標					
前期		1週	ガイダンス 2. 熱力学 (4) 比熱・仕事・内部エネルギー (5) 熱力学第1法則	;	・授業の概要と成績評価方法を理解する ・微分と積分を用いて、比熱・仕事・内部エネルギー等について、計算できる ・微分を用いて、熱力学第1法則を表現し、熱、仕事 、内部エネルギーが計算できる					
		2週	(6) カルノーサイクルと仕事		・断熱過程,等温過程,等圧過程,等積過程について 説明でき,それらの過程での物理量の変化量が計算で きる ・カルノーサイクルや他の機関での仕事量が計算でき る					
	1stQ	3週	(7) 熱力学第2法則とエントロピー		・熱力学第2法則の意味が説明できる ・熱力学第2法則を用いて、エントロピーが計算できる					
		4週	(8) 自由エネルギー		・内部エネルギー, エンタルピー, ヘルムホルツの自由エネルギー, ギブスの自由エネルギーの関係が説明でき, 計算できる					
		5週	3. 電磁気学 (1) 電荷とクーロンの法則		電気の起源と電荷保存則を用いて、移動する電気量が 計算できる ・クーロンの法則を用いて、静電気力が計算できる					
		6週	(2) 電場と電位		・微積分を用いて電場と電位の関係式が計算できる ・合成電場と合成電位が計算できる					
		7週	(3) ポテンシャルエネルギーとエネル保存則	ギー	・ポテンシャルエネルギーが計算できる ・エネルギー保存則を用いて電荷の運動が解析できる					
		8週	中間試験		エコッレイー体	(1) Y2 C/11V・C 中間の仕到が所作してる				
	2ndQ	9週	中間試験の解答と解説 (4) ガウスの法則		・解説を通じて,自分の間違った箇所を理解できる ・微積分を用いて,ガウスの法則を用いて電場が計算 できる (微分形を用いて電場が計算できる)					
		10週	(5) コンデンサー		・コンデンサーの静電容量が計算できる ・合成のコンデンサーの静電容量が計算できる					
		11週	(6) 誘電体		・誘電体による分極と電束密度が計算できる ・誘電体が挿入された場合のコンデンサーの静電容量 が計算できる					
		12週	(7) 電流と抵抗		・電流の定義が説明でき、計算できる ・オームの法則から合成抵抗が計算できる					
		13週	(8) キルヒホッフの法則と直流回路		・複雑な直流回路の合成抵抗が計算できる ・キルヒホッフの法則を用いて,電流が計算できる					
		14週	(9) 電流が作る磁場と磁束密度		・電流が作る磁場が計算できる ・磁荷,磁場,磁束密度の関係が説明でき,計算でき る					
		15週	期末試験							
		16週	答案返却・解答解説		解説を通じて					

モデルコアカリキュラムの学習内容と到達目標												
分類	分類 分野		学習内容の到達目標	学習内容の到達目標		到達レベル	授業週					
評価割合												
	試験		小テスト	課題レポート	口頭発表	合計						
総合評価割合	100		0	0	0	100						
基礎的能力	100		0	0	0	100						
専門的能力	0		0	0	0	0						
分野横断的能力	0		0	0	0	0						