苫小牧工業高等専門学校		開講年度	令和04年度 (2	2022年度)	授業科目	コンクリート構造学 I	
科目基礎情報							
科目番号	0021			科目区分	専門 / 必	専門 / 必修	
授業形態	授業			単位の種別と単位数	学修単位:	2	
開設学科	創造工学科(都市・環境系共通科目)			対象学年	4	4	
開設期	後期			週時間数	2	2	
教科書/教材	小林和夫他:コンクリート構造学第5版,森北出版						
担当教員	渡辺 暁央						
到達目標							

- 1. コンクリート構造の種類、特徴について、説明できる。
 2. コンクリート構造の代表的な設計法である限界状態設計法、許容応力度設計法について、説明できる。
 3. 曲げモーメ曲げモーメントを受ける部材の断面応力度の算定、使用性(ひび割れ幅)を検討できる。
 4. 曲げモーメントを受ける部材の断面応力度の算定、使用性(ひび割れ幅)を検討できる。
 5. せん断力を受ける部材の破壊形式を説明でき、せん断力に対する安全性を検討できる。
 6. プレストレストコンクリートの特徴、分類について、説明できる。
 7. プレストレスカの算定及び断面内の応力度の計算ができ、使用性を検討できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目 1	コンクリート構造の種類、特徴に ついて、説明できる。	左記項目について,列挙できる.	左記項目に関することができない.
評価項目 2	コンクリート構造の代表的な設計 法である限界状態設計法、許容応 力度設計法について、説明できる 。	左記項目について, 示方書を参照 して計算できる.	左記項目に関することができない ・
評価項目3	曲げモーメントを受ける部材の破壊形式を説明でき、断面破壊に対する安全性を検討できる。	左記項目について, 示方書を参照 して計算できる.	左記項目に関することができない・
評価項目4	曲げモーメントを受ける部材の断 面応力度の算定、使用性(ひび割 れ幅)を検討できる。	左記項目について,示方書を参照 して計算できる.	左記項目に関することができない・
評価項目 5	せん断力を受ける部材の破壊形式 を説明でき、せん断力に対する安 全性を検討できる。	左記項目について,示方書を参照 して計算できる.	左記項目に関することができない・
評価項目 6	プレストレストコンクリートの特徴、分類について、説明できる。	左記項目について,列挙できる.	左記項目に関することができない
評価項目7	プレストレスカの算定及び断面内 の応力度の計算ができ、使用性を 検討できる。	左記項目について,示方書を参照 して計算できる.	左記項目に関することができない・

学科の到達目標項目との関係

- I 人間性 II 実践性 III 国際性 CP2 各系の工学的専門基盤知識,および実験・実習および演習・実技を通してその知識を社会実装に応用・実践できる力 CP4 他者を理解・尊重し、協働できるコミュニケーション能力と人間力

教育方法等

概要	鉄筋コンクリートの概要と限界状態設計方法を中心に講義を行う。この科目は企業でコンクリート構造物の維持管理・ 設計を担当していた教員が,設計手法等について講義形式で授業を行うものである。また,PCセミナーでは,企業から 技術者を招聘してプレストレストコンクリートに関する講義を実施する。
授業の進め方・方法	講義を中心に授業を進めるが,適宜演習を行う。 この科目は学修単位科目のため,事前・事後学習として課題・演習などを実施し,評価の対象とする。また,課題を含めて,60時間の自学自習時間を要する。 学業成績が60点未満のものには再試験を実施する。なお,課題が未提出の場合,再試験は実施しない。再試験を実施した場合,評価は60点を超えないものとする。
注意点	講義は、構造力学および建設材料学の知識を前提として実施する。特に、M図,Q図、断面計算、応力算定式、モールの応力円は必ず理解しておく必要がある。講義では、課題を毎回出題するので、各自自分で解いて提出すること。

授業の属性・履修上の区分

授業計画

		週	授業内容	週ごとの到達目標
後期 3rdQ		1週	鉄筋コンクリート構造の概要	コンクリート構造物に対する鉄筋の配置について理解する.
		2週	コンクリート構造の設計法	各種設計法の概要を理解する.
		3週	コンクリート構造用材料の力学的性質	コンクリート,鉄筋の設計強度について計算できる.
		4週	使用状態の曲げ応力度	構造力学の知識に基づき,鉄筋コンクリートの曲げ応力度を計算できる.
	3rdQ	5週	曲げに対する耐力	限界状態設計法に基づき,梁の曲げ耐力を計算できる
		6週	使用状態の曲げ応力度 (軸方向力がある場合)	構造力学の知識に基づき,鉄筋コンクリートの曲げ応力度を計算できる.
		7週	曲げと軸方向力に対する耐力	柱部材等の軸方向力を有する断面について,曲げ耐力を計算できる.
		8週	せん断に対する耐力	モールの応力円との対応から,せん断補強する方法を理解し,せん断耐力が計算できる.

4thQ		9週	ひび割れと鋼材腐食			使用状態におけるひび割れ幅の計算ができる.		
	4thQ	10週	たわみ			使用状態におけるたわみの計算ができる.		
		11週	疲労			使用状態における疲労の計算ができる.		
		12週	PCセミナー1	PCセミナー1		外部講師による講義. プレストレストコンクリート構造の概要を理解する.		
		13週	PCセミナー2			外部講師による講義. プレストレストコンクリート構造で建設された構造物の概要を理解する.		
		14週	構造細目	構造細目		コンクリート構造物を設計・建設するために必要な約 束事を理解できる.		
		15週	許容応力度設計法			許容応力度設計法による計算ができる.		
		16週						
評価割合								
			定期試験	達成度試験	部		合計	
総合評価割合		35	35	3	30	100		
基礎的能力		0	0	0)	0		
専門的能力		35	35	3	30	100		
分野横断的能力		0	0	0)	0		