旭川	工業高等	 専門学校	開講年度 令和03年度 (2	2021年度)	授業科目	機械要素 I		
科目基礎		131 3 3 121	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
科目番号	-11-110	0019		科目区分	専門 / 必何	修		
授業形態		講義		単位の種別と単位				
開設学科			 、テム工学科	対象学年	3			
開設期		後期		週時間数	2			
教科書/教	 材	機械設計	法 (塚田 忠夫・吉村 靖夫・黒崎 茂・	柳下 福蔵 共著, 彩				
担当教員	•	横井 直信			,			
到達目標		'						
1 歯車の	成速比 強	度等を説明 ⁻ の動力伝達を 材料を選定し	でき、それらを計算できる。 を説明でき、それらを計算できる。 し、機械要素の寸法を理論と実際の両面	から決定できる。				
ルーブリ	Jック							
			理想的な到達レベルの目安	標準的な到達レイ	ペルの目安 未到達レベルの目安			
評価項目1			歯車の減速比,強度等を正しく説 明でき,それらを導き出せる。	歯車の減速比, 強 , それらを計算で	強度等を説明でき できる。	歯車の減速比,強度等を説明できず,それらを計算できない。		
評価項目2	!		ベルト, チェーンの動力伝達を正 しく説明でき, それらを導き出せ る。	ベルト, チェーン 明でき, それらを	ンの動力伝達を説 を計算できる。	ベルト, チェーンの動力伝達を説 明できず, それらを計算できない。		
評価項目3			使用目的に応じて材料を正しく選定 定でき,機械要素の寸法を理論と実	使用目的に応じて機械要素のさる	て材料を選定し 法を理論と実際の	使用目的に応じて材料を選定できる。		
			でき、機械安系の引法を埋論と実際 の両面から導き出せる。	一機械安系の引流 両面から決定でき	まで 注誦 こ 关 除の きる。	ず,機械要素の寸法を理論と実際 の両面から決定できない。		
学科の到	J達目標I	頁目との関	原係					
学習・教育	到達度目標	票 機械シス	テム工学科の教育目標① 学習・教育到遺	達度目標 本科の教	育目標③			
教育方法	 :等							
概要	-	まず歯隼ルトやチャ	[についてその種類と構造を学び,減速] ンによる動力伝達について理解す? □	比,強度設計,歯 る。その上で,工 計に基づく破壊防!	車列速度伝達とい 業標準化,信頼性 よの重要性を認識	った動力学を理解する。さらに, べ 設計, 許容応力計算法について学び する		
授業の進め	か方・方法		3の構成要素である歯車,ベルト,チェ- 目的に対して最適な材料と寸法を合理的が					
注意点		•	,機械力学,材料加工学など多岐にわた ある。また多数の解の中から最適解を行	たる分野を総合化で 得るという設計特殊	する科目であるた 有の手法を理解す	め,個々の学問の十分な理解が必要 ることがポイントである。		
授業の属	属性・履何	多上の区分)					
□ アクテ	<u>-</u> ィブラーニ	ニング	□ ICT 利用	□ 遠隔授業対応	,	□ 実務経験のある教員による授業		
授業計画	1							
		週	授業内容		週ごとの到達目標	<u> </u>		
	3rdQ	1週	歯車の種類および歯車各部の名称を説 する。		歯車の種類、各部の名称、歯型曲線、歯の大きさの表 しかたを説明できる。			
		2週	インボリュート歯車の歯型曲線が描け いて説明できるようにする。		歯車の種類、各部の名称、歯型曲線、歯の大きさの表しかたを説明できる。			
後期		3週	標準平歯車の歯の大きさを寸法で示せ 標準平歯車のすべり率を説明でき、そ	カを計算できる。	歯車の種類、各部の名称、歯型曲線、歯の大きさの表しかたを説明できる。			
		4週	標準平歯車のかみあい率を説明でき、 標準平歯車のかみあい率を説明でき、		すべり率、歯の切下げ、かみあい率を説明できる。			
		5週 6週	るようにする。 歯の切下げについて説明できるように		すべり率、歯の切下げ、かみあい率を説明できる。 すべり率、歯の切下げ、かみあい率を説明できる。			
		7週	転位歯車の特徴を説明でき、標準平歯 明できるようにする。また、転位歯車 算できるようにする。 次週、中間試験を実施する。	車との違いを説 の転位係数を計	標準平歯車と転位歯車の違いを説明できる。			
		8週	中間試験		 学んだ知識の確認ができる。			
	4thQ	9週	標準平歯車の歯の曲げ強さを計算でき	るようにする。	標準平歯車について、歯の曲げ強さおよび歯面強さを計算できる。また、許容応力、安全率、疲労破壊、応力集中の意味を説明できる。さらに、標準規格を機械設計に適用できる。			
		10週	標準平歯車の歯の歯面強さを計算でき	るようにする。	標準平歯車について、歯の曲げ強さおよび歯面強さを 計算できる。また、許容応力、安全率、疲労破壊、応 力集中の意味を説明できる。さらに、標準規格を機械 設計に適用できる。			
		11週	中心固定の歯車列および遊星歯車列の 算できるようにする。	速度伝達比を計	歯車列の速度伝達比を計算できる。			
		12週	差動歯車列の速度伝達比を計算できる	ようにする。	歯車列の速度伝達比を計算できる。			
		13週	ベルトの動力伝達を説明でき、それを にする。	計算できるよう	標準規格を機械設計に適用できる。			
		14週	チェーンの動力伝達を説明でき、それらにする。	を計算できるよ	標準規格を機械設計に適用できる。			
			フェール・セーフ設計やフール・プル	1				

	16	週 学年:	・ 年末試験 学んだ知識の確認ができる。										
モデルコアカリキュラムの学習内容と到達目標													
分類		分野	学習内容	学習内容の到達目標			到達レベル	授業週					
専門的能力			機械設計	標準規格の意義を説明できる。			3	後15,後16					
		機械系分野		許容応力、安全率、疲労破壊、応力集中の意味を説明できる。				3	後9,後10				
				標準規格を機械設計に適用できる。				3	後9,後 10,後13,後 14				
	分野別の専			歯車の種類、各部の名称、歯型曲線、歯の大きさの表し方を説明できる。				3	後1,後2,後 3				
	門工学			すべり率、歯の切下げ、かみあい率を説明できる。				3	後4,後5,後 6				
				標準平歯車と転位歯車の違いを説明できる。				3	後7				
				標準平歯車について、歯の曲げ強さおよび歯面強さを計算できる。				3	後9,後10				
				歯車列の速度伝達比を計算できる。				3	後11,後12				
評価割合													
	試験	レ	ポート	相互評価	態度	ポートフォリオ	その他	合語	it				
総合評価割合	à 80	20)	0	0	0	0	10	0				
基礎的能力	0	0		0	0	0	0	0					
専門的能力	80	20)	0	0	0	0	10	0				
分野横断的能	も 0	0		0	0	0	0	0					