旭川	工業高等	専門学校	開講年度 令和04年度 (2	2022年度)	授業科目	機械設計演習Ⅱ			
科目基础	楚情報								
科目番号		0038		科目区分	専門 / 必修				
授業形態		演習		単位の種別と単位					
開設学科		機械シス	テム工学科	対象学年	4				
開設期		後期		週時間数	後期:2				
教科書/教	材	プリント	、(設計方針, 計算式, 図表, 資料など))	•				
担当教員		宇野 直嗣	同						
到達目標	票								
1. 歯車ポ 2. 機械部	ンプの仕組 品の規格を CAD システ	理解し、汎馬	仕様に基づいた主要部の設計ができる 用機械部品を活用した設計ができる。 データベースを活用し,三次元CAD シフ		ポンプの三次元モ	Eデルや組立図などを作成できる。			
<i>,,</i> , ,			理想的な到達レベルの目安	標準的な到達レイ	ベルの目安	未到達レベルの目安			
評価項目1			歯車ポンプの仕組みを理解し、仕 様に基づいた主要部の設計ができ ポンプ内部の流動現象、加工方 法およびポンプ全体の機能性にも 配慮した設計ができる。	歯車ポンプの仕様に基づいた主張る。	組みを理解し、代	せ 歯車ポンプの仕組みを理解できず			
評価項目2	2		機械部品の規格を理解し、汎用機 械部品だけでなく、市販の機械部 品を積極的に活用した迅速 かつ合理的な設計ができる。	機械部品の規格を 械部品を活用した できる。	を理解し, 汎用機 に設計が	機械部品の規格を理解できず, 汎 用機械部品を活用した設計ができ ない。			
評価項目3			三次元CAD システムのデータベースだけでなく、機械部品メーカーのデータベースも活用し、三次元CAD システムにより歯車ポンプの三次元モデルや組立図などを作成できる。	三次元CAD シススを活用し,三次システムによりは元モデルや組立る。	テムのデータベ 欠元CAD _射 車ポンプの三次 図などを作成でき	ー 三次元CADシステムのデータベースを活用できず、三次元CADシステムにより歯車ポンプの三次元モデルや組立図などを作成できない。			
学科の発	到達目標耳	頁目との関							
	育到達度目		テム工学科の教育目標② 学習・教育到遺	達度目標 本科の教	育目標③				
<u>教育力力</u> 概要	五寸	機械設	計演習 I に引き続き,平歯車を用いた 元CAD により,部品のモデリングとそ	機械として, 外接:	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	ンプ(以下,歯車ポンプ)の設計を行			
は 名 間 ・ 注意点 注意点		は、間・・・ト・こ・知識を持ちます。	正ポンプの設計を行う。各自に与えられた設計仕様に基づき、設計計算と製図作成(モデリング)とを交互に行いた(材料力学など)、動き(機構学など)、製作方法(機械加工学など)を検討しながら、形状・寸法・材質・製品で元公内で行う。 また、JISなどの規格、標準品などを適切に使用することが求められる。なお、設計図面の作成で元公内で行う。 また、JISなどの規格、標準品などを適切に使用することが求められる。なお、設計図面の作成で元公口で行う。 また、JISなどの規格、標準品などを適切に使用することが求められる。なが、設計図面の作成の場合を対して、自学自習の時代の各自の自主性、計画性および積極性が強く求められる。設計計算書および図面の提出期限を厳守すること。 また おり は おり は おり は は は は は は は は は は は は は						
15:344 a E	-u -u		てを,「設計計算書と設計図面」と「	設計計算と製図の	取組」の両方から	つ評価する。			
	禹性・/復作 ティブラーニ	<u>多上の区分</u> ニング	↑ ☑ ICT 利用	□遠隔授業対応	<u> </u>	□ 実務経験のある教員による授業			
14277K=1-						•			
授業計画	<u> </u>	週	授業内容		週ごとの到達目	標			
後期		1週	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		・授業の概要と評価方法が理解できる。 ・設計課題について理解することができる。				
		2週	3)軸の強度計算 4)ケースの強度計算		・資料に基づいて主要部品の設計計算ができる。				
	3rdQ	3週	5)カバー取付けボルトの強度計算6)リリーフ弁ばねの諸元計算		・資料に基づいて主要部品の設計計算ができる。				
		4週	(7)歯車の諸元計算 (8)その他の部品の選定①			て主要部品の設計計算ができる。			
		5週	(8)その他の部品の選定② (9)ケースおよびカバーのモデリング①	0	・資料に基づい ・三次元CADに ングができる。	て主要部品の設計計算ができる。 より主要部品および関連部品のモデリ			
		6週	(9)ケースおよびカバーのモデリング@		ングができる。	より主要部品および関連部品のモデリ			
		7週	(9)ケースおよびカバーのモデリング③	3)	ングができる。	より主要部品および関連部品のモデリ			
		8週	(10)作業状況の中間チェック (11)ケースおよびカバーを除いた部品 アセンブリ①	のモデリングと	・設計計算書の中間提出により,担当 教員へ課題の進行状況を報告し,訂正が必要な箇所を明らかすることができる。 ・三次元CADにより,部品のモデリング,アセンブリおよび図面作成ができる。				

		O.E.	(11		カバーを除いた部兵	品のモデリングと	 ・=次元CAD に b	り 部品の	カモデリング	グーアセンブ
		9週		L)ケースおよびカバーを除いた部品のモデリングと センブリ② ・三次元CAD により, 部品 センブリ② および図面作成ができる。						•
		10週	アゼ	.)ケースおよびカバーを除いた部品のモデリングと ・三次元CAD により, 部品のセンブリ③ および図面作成ができる。						
4		11週	アセ)ケースおよびカバーを除いた部品のモデリングと ・三次元CAD により,部品のマンブリ④ および図面作成ができる。					カモデリン	グ,アセンブ
	thQ	12週	(11) アセ)ケースおよびカバーを除いた部品のモデリングと ・三次元CAD により, 部品のシブリ⑤ および図面作成ができる。						
		13週	(12)	・三次元CAD により、部品 <i>の</i> および図面作成ができる。				カモデリン	グ,アセンブ	
		14週	(13)	・線種の区別, 切断, はめあ 対区の実施と完成 りまた りまた りまた りまた りまた りょう はいまた はいまた はいまた はいまた はいまた はいまた はいまた はいまた			い記号, 信 を作成でき	±上げ記号な∂ €る。		
		15週	(14))設計計算書の第	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			面などを期日までに完成させ		
		16週								
	アカリキ			内容と到達		læ.			T-13+1 0	1554450
)類		分野	5	学習内容	学習内容の到達目	標			到達レベル	ル 授業週 ※ 5 ※ 6 ※
					CADシステムの役	割と基本機能を理	本機能を理解し、利用できる。			後5,後6,後 7,後8,後 9,後10,後 11,後12, 13,後14,
				製図 -	ボルト・ナット、軸継手、軸受、歯車などの機械要素の図面を作成できる。			4	後5,後6,4 7,後8,後 9,後10,後 11,後12, 13,後14,	
					歯車減速装置、手巻きウインチ、渦巻きポンプ、ねじジャッキなどを題材に、その主要部の設計および製図ができる。			4	後1,後2,4 3,後4,後 5,後6,後 7,後8,後 9,後10,後 11,後12, 13,後14,	
				機械設計	標準規格の意義を説明できる。			4	後1,後2, 3,後4,後 5,後15	
厚門的能力	分野別の 門工学	専機械	添分野		 許容応力、安全率、疲労破壊、応力集中の意味を説明できる。 			4	後1,後2, 3,後4,後 5,後15	
					標準規格を機械設計に適用できる。			4	後1,後2,6 3,後4,後 5,後15	
					ねじ、ボルト・ナットの種類、特徴、用途、規格を理解し、適用 できる。			4	後1,後3,4 15	
					ボルト・ナット結合における締め付けトルクを計算できる。			4	後1,後3, 15	
					ボルトに作用するせん断応力、接触面圧を計算できる。			4	後1,後3,4 15	
					軸の種類と用途を理解し、適用できる。			4	後1,後2, 15	
					軸の強度、変形、危険速度を計算できる。				4	後1,後2, 15
					歯車の種類、各部の名称、歯型曲線、歯の大きさの表し方を説明 できる。			4	後1,後4, ² 15	
					すべり率、歯の切下げ、かみあい率を説明できる。			4	後1,後4,行 15	
					標準平歯車と転位歯車の違いを説明できる。				4	後1,後4,7 15
					標準平歯車について、歯の曲げ強さおよび歯面強さを計算できる。			4	後1,後4,7 15	
平価割合		l		1	1	1				-
· · · · · · · · · · · · · · · · · · ·	設計	計算書	設調	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	相互評価	態度	ポートフォリオ	その他		計
総合評価割合 70					0	0	0	0	100	
	140		٦	4	0	0	0	0	17	3
基礎的能力 専門的能力	49 0		0		0	0	0	0	0	