旭川工業高等専門学校		開講年度	平成29年度 (2017年度)		授業科目	CAD/CAE		
科目基礎情報								
科目番号	0049			科目区分	専門 / 必	専門 / 必修		
授業形態	講義			単位の種別と単位数	位数 学修単位: 2			
開設学科	機械システム工学科			対象学年	5	5		
開設期	前期			週時間数	前期:2	前期:2		
教科書/教材	各分野担当が作成したプリント							
担当教員	石向 桂一,宇野 直嗣,千葉 良一							
到達日標								

- 1. 解析の内容とCAE ソフトウェアの操作方法を理解し、正確に作業を行うことができる。 2. 得られたCAE 解析結果を分析・解釈し、CAE 解析結果の妥当性を確認することができる。 3. 目的に対応した結果が得られ、それを基にして体裁が整った適切なレポートを作成し、期限内に提出することができる。 4. グループのメンバー間で討議しながら、与えられた課題に取り組むことができる。

ルーブリック

				理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	(A-1, D-	·1, D-2,	E-		解析の内容とCAE ソフトウェアの 操作方法を理解し、正確に作業を 行うことができる。	解析の内容とCAE ソフトウェアの 操作方法を理解しておらず、正確 に作業を行うことができない。
評価項目2	(A-1, D-	·1, D-2,	E-	得られたCAE 解析結果を深く分析 ・解釈することができ、CAE 解析 結果の妥当性を詳細に確認するこ とができる。		得られたCAE 解析結果を分析・解釈できず、CAE 解析結果の妥当性を確認することができない。
評価項目3	(A-1, D-	·1, D-2,	E-	目的に対応した満足できる結果が 得られ、それらを明記した、体裁 が整った適切なレポートを作成し 、期限内に提出することができる 。	目的に対応した結果が得られ、それを基にして体裁が整った適切なレポートを作成し、期限内に提出することができる。	目的に対応した結果が得られず、 それを基にして体裁が整った適切 なレポートを作成できないため、 期限内に提出することができない。
評価項目3	(A-1, D-	·1, D-2,	E-	先にたって行動の模範を示しつつ、グループのメンバーと協調し、 討議しながら課題に取り組むことができる。	グループのメンバー間で討議しな がら、与えられた課題に取り組む ことができる。	主体性および協調性がなく、グループのメンバーで討議しながら課 題に取り組むことができない。

学科の到達目標項目との関係

学習・教育到達度目標 機械システム工学科の教育目標③ 学習・教育到達度目標 本科の教育目標② JABEE D-1 JABEE D-2 JABEE E-2 JABEE基準 (c) JABEE基準 (d)

教育方法等

概要	CAE に関する基本知識を習得した後に、3 グループに分かれ、座学で学ぶ機械工学の主要分野における典型的な事例、すなわち、流体力学分野の「円柱に働く抗力と抗力低減」、機械力学分野の「モード(固有値)解析による音叉の設計」、熱・伝熱工学分野の「CPUヒートシンクの熱伝導解析」を取り上げ、それらの現象をCAE ソフトウェアによりそれぞれ再現し、得られたCAE 解析結果の妥当性を分析する能力の習得を目指す。次に、習得したCAE 解析結果の分析能力を活用し、各分野における応用事例についてCAE 解析による現象の数値予測を行い、CAE 解析の活用を目指す。 なお、CAE ソフトウェアには、3D-CAD ソフトウェアであるSolidWorks のCAE解析機能を用いる。
授業の進め方・方法	本科目では、大別して、機械工学における主要科目である流体力学(工学)、機械力学、熱・伝熱工学について取り扱う。 各テーマごとに、初めに、テキストの例題を通じてSolidWorksのCAE解析機能の操作方法について習得させる。 次に、例題に関連した課題についてCAE解析を行わせ、関連科目で習得した知識を活用させることで、実験および理論の結果とCAE解析結果との比較から、CAE解析結果の妥当性の分析を学生自らに行わせ、それらの結果をレポートにまとめ、提出させる。 なお、本科目では試験は行わない。
注意点	・教育プログラムの学習・教育到達目標の各項目の割合は、A-1(20%)、D-1(30%)、D-2(30%)、E-2(20%)とする。・自学自習時間(60時間)は、日常の授業(30時間)に係わる理論についての予習復習時間、解析結果を検討しレポートにまとめる時間などを総合したものとする。・評価については、合計点数が60点以上で単位修得となる。その場合、各到達目標項目の到達レベルが標準以上であること、教育プログラムの学習・教育到達目標の各項目を満たしたことが認められる。・評価項目と評価対象の各組合せは、「情報技術知識活用力(A-1)」が「実技と成果品」、「基礎工学・専門工学知識活用力(D-1)」が「レポート」、「分析力(D-2)」が「レポート」、「積極性・協調性(E-2)」が「レポート」である。

授業計画

		週	授業内容	週ごとの到達目標				
前期 1stQ		1週	1. ガイダンス 2. CAE 概論	・授業の概要・進め方・注意点およびレポートの作成 方法等が理解できる。 ・CAE の概要が理解できる。				
	2週	3. CAE 実習 (1) 円柱に働く抗力と抗力低減(流体力学分野)①	・実験結果や理論と、CAE 解析結果を比較検討し、 CAE 解析結果の妥当性を確認することができる。 ・CAE 解析により、機械工学における諸現象の数値予 測を行うことができる。					
	3週	(1) 円柱に働く抗力と抗力低減(流体力学分野)②	・実験結果や理論と、CAE 解析結果を比較検討し、 CAE 解析結果の妥当性を確認することができる。 ・CAE 解析により、機械工学における諸現象の数値予 測を行うことができる。					
	4週	(1) 円柱に働く抗力と抗力低減(流体力学分野)③	・実験結果や理論と、CAE 解析結果を比較検討し、 CAE 解析結果の妥当性を確認することができる。 ・CAE 解析により、機械工学における諸現象の数値予 測を行うことができる。					
	5週	(1) 円柱に働く抗力と抗力低減(流体力学分野)④	・実験結果や理論と、CAE 解析結果を比較検討し、 CAE 解析結果の妥当性を確認することができる。 ・CAE 解析により、機械工学における諸現象の数値予 測を行うことができる。					

	6週	(2) 真直はりのたわみと有孔板の応力集中(材料力学分)①			・実験結果や理論と、CAE 解析結果を比較検討し、 CAE 解析結果の妥当性を確認することができる。 ・CAE 解析により、機械工学における諸現象の数値予 測を行うことができる。			
	7週	(2) 真直はりのたわ 分) ②	みと有孔板の応力領	集中(材料力学	・実験結果や理論と CAE 解析結果の妥 ・CAE 解析により 測を行うことができ	と、CAE 解析結果を 当性を確認するこ。 、機械工学における きる。	を比較検討し、 とができる。 る諸現象の数値予	
	8週	(2) 真直はりのたわ 分) ③	みと有孔板の応力領	集中(材料力学	・実験結果や理論と CAE 解析結果の妥 ・CAE 解析により。 測を行うことができ	、機械上字における	を比較検討し、 とができる。 る諸現象の数値予	
2ndQ	9週	(2) 真直はりのたわ 分) ④	みと有孔板の応力領	集中(材料力学	・実験結果や理論と CAE 解析結果の妥 ・CAE 解析により。 測を行うことができ	、機械上字における	を比較検討し、 とができる。 る諸現象の数値予	
	10週	(3)CPUヒートシン:	フの熱伝導解析(熱	・伝熱工学分野	・実験結果や理論と CAE 解析結果の妥 ・CAE 解析により。 測を行うことができ	当性を確認するこ。 、機械工学における。	とができる。	
	11週	(3)CPUヒートシン:) ②	フの熱伝導解析(熱	・伝熱工学分野	・実験結果や理論と CAE 解析結果の妥 ・CAE 解析により 測を行うことができ	当性を確認するこ。 、機械工学における	とができる。	
	12週	(3)CPUヒートシン:	フの熱伝導解析(熱	、・伝熱工学分野	・実験結果や理論と CAE 解析結果の妥 ・CAE 解析により 測を行うことができ	当性を確認するこ。 、機械工学における	を比較検討し、 とができる。 る諸現象の数値予	
	13週	(3)CPUヒートシンク	フの熱伝導解析(熱	、・伝熱工学分野	・実験結果や理論 る CAE 解析結果の妥 ・CAE 解析により 測を行うことができ	当性を確認するこ。 、機械工学における	とができる。	
	14週	ゼミナール①			・実験結果や理論と、CAE 解析結果を比較検討し、 CAE 解析結果の妥当性を確認することができる。 ・CAE 解析により、機械工学における諸現象の数値予 測を行うことができる。			
	15週	ゼミナール②			・実験結果や理論と、CAE 解析結果を比較検討し、 CAE 解析結果の妥当性を確認することができる。 ・CAE 解析により、機械工学における諸現象の数値予 測を行うことができる。			
	16週							
モデルコアカリキュラムの学習内容と到達目標								
分類 分野 学習内容 学習内容の到達目標						到達レ	ベル 授業週	
評価割合								
レポート		成果品・実技	相互評価	態度	ポートフォリオ	その他	合計	
総合評価割合	80	20	0	0	0	0	100	

基礎的能力

 専門的能力
 64

 分野横断的能力
 0