科目基础	** ** **	専門学校	^			2016年度)	リス木口	目 工学基礎			
						T					
科目番号		0002				科目区分		専門 / 必修			
受業形態		演習				単位の種別と単	位数 履修	単位: 1			
開設学科		システ	ム制御情	青報工学科		対象学年	2				
開設期	b期 後期					週時間数 2					
教科書/教材 特に指定しない				1							
旦当教員		阿部 晶	1								
到達目標	票										
L. 静力学 2. オーム	・動力学の人の法則やキ	基本的な法	法則を理 7の法則	解し,物体のを理解し,そ	運動および剛体の力 れらを利用して直流	のつり合いの計算でである。 の路の抵抗,電点	算ができる. 圧および電流 <i>の</i>	D計算ができる.			
<u>ν </u>	レーブリック							夫到達 1.			
静力学・動 利用して, び複雑な				力学・動力学	の基本的な法則を な物体の運動およ 力のつり合いの計	標準的な到達と 静力学・動力学 利用して,単純 び単純な剛体の 算ができる.	則を 静力学・ およ 利用して の計 び単純な	静力学・動力学の基本的な法則を利用して、単純な物体の運動おる び単純な剛体の力のつり合いの記 算ができない、			
評価項目2 プリカス カラス カラス カラス カラス カラス カラス カラス カラス カラス カ					アキルヒホッフの法 オームの法則やキルヒホッフの法 複数の電源が入っ 則を利用して,単純な直流回路に りいて,抵抗,電圧 ついて,抵抗,電圧および電流か			の法 オームの 路に 則を利用 流が ついて,			
 学科の3	到達目標功	頁目との				12.1.		1	- -		
		<u> </u>									
教育方法等 はじめに、重力場における物体の放物運動等の質点の力学について復習する。次いで、物体 概要 体の力のつりあいについて学習する。さらには、運動量保存則と力学的エネルギー保存則を 応用力を養う。最後に、オームの法則とキルヒホッフの法則から直流回路の計算方法を学習							ギー保存則を復 算方法を学習す	習し,演習問 る.	題を通じて		
受業の進む	め方・方法		施する.	字んた内容の	門科目の学習におい C演習を通じて復習 D理解を確認するた	めに佰題を課すの	つで,翌週の授	業までに提出す	ること.		
<u></u> 点意主		一一の演習	式を丸町 問題を自 養われる	自ら解き.ここ	はなく、公式の背後とで学習する力学の	にある理論と公式 基礎を確実に身に	ぱ導入の過程をこつけること。	充分に理解する 以上により, 今	よう心がける 後の専門科目	こと。多く に応用でき	
受業計画	画	\m	122,444					-			
		週	投業	授業内容			週ごとの到達目標 重力場における物体の運動に関する問題を解くこと:				
		1週	重力による運動 重力による運動 重力による運動				できる.	プる物体の運動に 			
		2週 3週	単の				を解くことができる。 ニュートンの運動の法則を駆使し,物体の運動を説明				
	3rdQ	4週	カと				できる。				
	Siaq	5週	剛体の	 のつりあい			力のモーメントと偶力モーメントについて説明できる				
		6週	岡山木				・ 剛体に働く力つりあいを求めることができる。				
		7週		中間試験			これまで学んだ内容について、試験で確認する.				
		8週					直流回路における電流の向きや電圧の高低について				
後期	4thQ	9週	電気回路の基礎電気回路(オームの法則)				明できる。 オームの法則を理解し、簡単な直流回路の電圧、電流				
		10週		回路(抵抗の〕	直並列) 直流回 抗が計 キルフの注別) 4 キルヒ						
		11週					抗が計算でき キルヒホップ	が計算できる. レヒホッフの法則を用いて,直流回路の抵抗,電 はび電流を計算できる.			
		12週			まいての注則 1 キル		キルヒホッフ	い電流を計算できる。 ヒホッフの法則を用いて, 簡単な直流回路の抵; 王および電流を計算できる.			
		13週	電気	回路(キルヒ	ホッフの注則)。		キルヒホッフ	このあり 电流 とい弃 とさる. ビホッフの法則を用いて, 直流回路の抵抗, 電圧 ド電流を計算できる.			
		14週	1戻軍	「回路(キルヒホッフの法則) 3			キルヒホッフの法則を用いて,複数の電源が入った 流回路の抵抗,電圧および電流を計算できる.				
		17/2	.5週 期末試験				これまで学んだ内容について、試験で確認する.				
		15週	期末	試験			これは ("子か	学んだ知識の再確認と修正ができる.			
					 说					なする.	
<u></u>	コアカロ	15週 16週	答案证	返却および解詞						ぱする.	
	コアカリ=	15週 16週	答案3の学習			西					
モデル <u>-</u> 分類	コアカリニ	15週 16週 キュラム(答案3の学習	返却および解認 内容と到達	目標		学んだ知識の)再確認と修正力	ができる.		
分類		15週 16週 キュラム 分野	答案3の学習	返却および解語 内容と到達 学習内容	目標 学習内容の到達目標 力は、大きさ、向 、適用できる。 一点に作用する力の 算できる。	き、作用する点に の合成と分解を図	学んだ知識のことので表されて表されて表現でき、)再確認と修正た ることを理解し	ができる. 到達レベル 3 3		
	∠ \₩₹₽Ⅱ	15週 16週 キュラム 分野	答案がの学習	返却および解語 内容と到達 学習内容	目標 学習内容の到達目標 力は、大きさ、向 、適用できる。 一点に作用する力の	き、作用する点に の合成と分解を図 のつりあい条件を	学んだ知識 <i>の</i> よって表され で表現でき、 説明できる。)再確認と修正た ることを理解し	ができる. 到達レベル 3		

	·			着力点が異なる力の	つつりあい条件を訪	胡できる。		3	
				速度の意味を理解し 説明できる。	ノ、等速直線運動に	おける時間と変位	の関係を	3	
				加速度の意味を理解の関係を説明できる	平し、等加速度運動 る。	かにおける時間と速	度・変位	3	
				運動の第一法則(慣性の法則)を説明できる。				3	
				周速度、角速度、回転速度の意味を理解し、計算できる。				3	
				向心加速度、向心力、遠心力の意味を理解し、計算できる。				3	
		電気・電子	電気回路	オームの法則を説明し、電流・電圧・抵抗の計算ができる。				3	
		系分野		キルヒホッフの法則を用いて、直流回路の計算ができる。				3	
評価割合									
	試験		課題	相互評価	態度	ポートフォリオ	その他	合	·計
総合評価割合	i 70	3	30	0	0	0	0	10	00
基礎的能力	60	-	25	0	0	0	0	85	5
専門的能力	10	ī	5	0	0	0	0	15	5
分野横断的能	力 0	()	0	0	0	0	0	