旭川	工業高等	等専門学校	交 開講年度 平成31年度 (2	2019年度)	授業科目			
科目基础								
科目番号 0004				科目区分	専門 / 必修	専門 / 必修		
授業形態		実験		単位の種別と単位				
開設学科				対象学年	1			
開設期		通年	J J	週時間数	3			
			礎, 化学(東京書籍)/改訂版フォトサ·					
教科音/多 担当教員			-					
		ජ出 哲	f,小寺 史浩,小林 渡,堺井 亮介,富樫 巌,枚	如用 竹芯, 技侧概具	, 址			
到達目	_							
2.学科横	断グループ	技術の初学演習におい	者として必要な基本的な考え方,基本操 て,共同作業能力を育むことができる。	作を身につけるこ。 	とができる。 			
ルーブリック			理想的な到達レベルの目安	標準的な到達レヘ	レベルの目安 未到達レベルの目安			
			化学技術の初学者として必要な基 化学技術の初学			木到達レベルの日女 化学技術の初学者として必要な基		
評価項目	1		本的な考え方,基本操作を正しく 身につけることができる。	本的な考え方,基 けることができる	基本操作を身につ	本的な考え方,基本操作を身につけることができない。		
評価項目	2		学科横断グループ演習において共 同作業能力を正しく育むことがで きる。	学科横断グループ 同作業能力を育む		学科横断グループ演習において共同作業能力を育むことができない。		
学科の7	到達目標〕	百日との「	'	1		1-		
				ロ猫 木砂の歩き口	H== ③			
		惊 划貝化子	工学科の教育目標 ① 学習・教育到達度	口伝 4件の3月日	ほん			
教育方法	丢等							
概要		1)実 2)実 3)学	を通じて化学現象に興味をもたせる。 を通して化学技術の初学者として必要な基本的な考え方,基本操作を身につけさせる。 横断グループ演習において,共同作業能力を育成する。					
前期は1/			クラスを数班に分けて、4テーマのものづくり実習を体験し、その内容についてPCを用いたプレゼンテーショ 。また、学科横断グルーブ演習を実施する。後期は1クラスを10班程度に分けて、基礎的な化学実験を行う。ま はな器具で操作も簡単にでき、楽しみながら化学に興味をもってもらうことを目的としている。					
初めて実験をただ			験を経験する学生も多数いるので安全第一を考え,実験内容を充分に理解し,危険の防止につとめること。実機械的に行うのではなく,どうしてその実験を行なうのかを考え,操作や観察の要点などをよく理解すること 学科横断グループ演習では,レポート内容を取り組み状況に含めて評価する。(自学科:グループメンバーに 場,他学科:受講生の立場で評価することになる。)評価については,合計点数が60点以上で単位修得となる。					
授業計画	画	٥			·			
INH I F	1	週	授業内容		 週ごとの到達目標			
		1週	物質化学工学科ガイダンス		学科目標を理解し、将来の進路について認識を深めることができる。前期は、クラスを数班に分け、4テーマのものづくり実習を体験し、各グルーブは高専祭において1つのテーマについてまとめ発表できる。			
		2週	ものづくり体験実習①-1		1. セッケンをつくることができる。			
		3週	ものづくり体験実習①-2					
	1stQ	4週	ものづくり体験実習②-1		2. 水あめをつく	 ススレができる		
		5週	ものづくり体験実習②-2		と、小ののかでノヘ	∞∟∟// ⟨८'∅ ₀		
					2 姉市・市府をつくスマレギできて			
		6週	ものづくり体験実習③-1		3. 納豆・豆腐をつくることができる。			
		7週	ものづくり体験実習③-2		4 1±11-5 + ·	比一芸ナーノフラエバーニー		
		8週	ものづくり体験実習④-1		4. 植物色素でph	I指示薬をつくることができる。		
前期		9週	ものづくり体験実習④-2					
		10週	P C導入教育, プレゼンテーション入	門・実施	やポスター発表を	青報処理施設を利用し,PCを使用して口頭発スター発表を行うことができる。		
		11週	ものづくり体験実習⑤-1		上述の4つのテー [、] 験に取り組み、実 。	7より1つを選択し、関連した上級実 験成果をプレゼンテーションできる		
	2ndQ	12週	ものづくり体験実習⑤-2					
		13週	ものづくり体験実習⑤-3					
		14週	ものづくり体験実習⑤-4					
		15週	ものづくり体験実習発表		ションできる。尚	組んだ上級実験に関する実験成果をプレゼンテー ンできる。尚,プレゼン資料を加工し高専祭で展 こう		
		16週			<u>示を行う。</u>			
後期		1週	実験説明		実験をただ機械的に行うのではなく, どうしてその実験を行なうのかを考え,操作や観察の要点などをよく理解することの重要性が理解できる。			
		2週	学科横断グループ演習①		学生がチューター役となり前期に受講した体験実習の 内容を他学科の学生に教えることができる。			
	3rdQ	3週	学科横断グループ演習②					
1女州	SiuQ	4週	学科横断グループ演習③					
		5週	学科横断グループ演習④					
				+	基本的か器目の町			
		6週	基礎実験① 基本操作		基本的な器具の取り扱い方と実験操作が身についてい る。			
		7週	基礎実験② 塩化水素,硫酸,硝酸		強酸の代表的な塩酸、硫酸、硝酸の性質を調べられる。			

		8週		基礎到	実験③ 金属~	イオンの反応	種々の金属イオンの性質を調 および銅,銀のアンミン錯イ	べられる。例 オンと硫化物	引)水酸化物 D,炎色反応	
		9週	9週 基礎等		など。 シュウ酸標準溶液によって 基礎実験④ 中和滴定 濃度を求め,次に食酢中のできる。			水酸化ナトリ 酸の濃度を調	リウム溶液の りべることが	
		10i					化学反応で発生した熱量を測定し, その結果からへス の法則を導くことができる。			
	4thQ			基礎是			化学変化に伴う物質の質量変化が一定割合で起こり , 化学反応係数が物質量の比を示すことを確かめられる。			
			13週 基礎到		は味中野魚・スリス・リの歌ル		。 アルコールを酸化し, その生成物であるアルデヒドの 性質について調べられる。			
2					実験® アルス	カリ金属・電 気 分 解	アルカリ金属の代表として、ナトリウムの性質を調べられる。塩化銅(I)が水溶液中で銅イオンと塩化物イオンに分かれていることを、電気分解により調べられる。			
					実験⑨ アン ⁼	Eニアの性質	°			
			15週 基礎 3		株実験の pHの測定 pH試験紙を用いてpHや		pH試験紙を用いてpHやモルpHとの関係を調べられる。			
	フカリナ	16i - ¬ =		\⇔33	 内容と到達					
<u>モテルコ.</u> 分類	アカワモ		<u>ノムの</u> 分野	子白	学習内容	□ は は は は は は は は は は は は は は は は は は は		到達レベル	授業调	
						物理、化学、情報、工学における基礎的な原理や現象を明らかに するための実験手法、実験手順について説明できる。		2	前15,後 6,後7,後 8,後9,後 10,後11,後 12,後13,後 14,後15	
					技 工学実験技 術(各種測定 方処処定 方処処法で、考 察方法)	実験装置や測定器の操作、及び実験 扱を身に付け、安全に実験できる。	2	· 後6,後7,後 8,後9,後 10,後11,後 12,後13,後 14,後15		
基礎的能力	工学基礎	工学実験技術(各種測定 基礎 方法、データ処理、考察方法)		デー 、考		実験データの分析、誤差解析、有効 察の論理性に配慮して実践できる。	2	前11,前 12,前13,前 14,前15,後 7,後8,後 9,後10,後 11,後12,後 13,後14,後 15		
						実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。		2	前15,後 7,後8,後 9,後10,後 11,後12,後 13,後14,後 15	
						実験ノートや実験レポートの記載方法に沿ってレポート作成を実践できる。		2	後6,後7,後 8,後9,後 10,後11,後 12,後13,後 14,後15	
======================================	分野別の	Į	工 大学・生物 系分野【実 験・実習能 カ】		生物 有機化学実 吸引ろ過ができる。 【実 験			1	前2	
専門的能力	学実験・ 習能力	美			分析化学実験	中和滴定法を理解し、酸あるいは塩	2	後9		
	汎用的技	能	汎用的	技能	ガループローク・ロークショップ学の特字の合意形式の古法を生				後2,後3,後 4,後5	
		周囲の状況と自身の立場に照らし、必要な行動をとるこ				必要な行動をとることができ	3	後2,後3,後 4,後5		
	<u>~。</u> 自らの考えで責任を持ってものごとに取り組むことができる。				に取り組むことができる。	3	後2,後3,後 4,後5			
						チームで協調・共同することの意義	・効果を認識している。	3	後2,後3,後 4,後5	
							の感情をコントロールし、他		1,	

チームのメンバーとしての役割を把握した行動ができる。

リーダーがとるべき行動や役割をあげることができる。

適切な方向性に沿った協調行動を促すことができる。

チームで協調・共同するために自身の感情をコントロールし、他 者の意見を尊重するためのコミュニケーションをとることができ 3

当事者意識をもってチームでの作業・研究を進めることができる

リーダーシップを発揮する(させる)ためには情報収集やチーム内 での相談が必要であることを知っている

後2,後3,後 4,後5

後2,後3,後 4,後5

後2,後3,後 4,後5

後2,後3,後 4,後5

後2,後3,後 4,後5

後2,後3,後 4,後5

3

3

分野横断的 能力

態度・志向 性(人間力)

態度・志向 性

態度・志向 性

	積極性・協調性	達成度	プレゼンテーシ ョン	レポート(後期)	試験(後期)	その他	合計
総合評価割合	10	25	25	30	10	0	100
基礎的能力	0	5	0	10	0	0	15
専門的能力	0	15	15	15	10	0	55
分野横断的能力	10	5	10	5	0	0	30