TEIL	— 	+	BB=# 4- 4-	正 少2 0左左 /2	101 C /= := \	1心211111111111111111111111111111111111	4-4h 24 m		
		専門学校	開講年度	平成28年度 (2	(016年度)	授業科目	生物工学Ⅱ		
科目基礎	智情報				1				
科目番号	舒号 0008				科目区分	専門 / 必修			
授業形態	態講義				単位の種別と単位	拉数 学修単位: 2			
開設学科		物質化学工	学科		対象学年	5			
開設期	前期				週時間数	前期:4			
教科書/教材 富樫担当:応用微生物学 改訂版(培風館),					ジ本担当:生命化学II(丸善)				
担当教員		杉本 敬祐,	富樫 巌						
到達目標									
3.バイオラ 4.微生物の	Fクノロジ- O働きおよび	−が社会に与え ゾその応用方法	の専門分野のより の方法の原理を理 る影響について理 について理解し, 誤にし, 説明できる	説明できる.	こ適用できる.				
ルーブリ	Jック								
			理想的な到達レ	ベルの目安	標準的な到達レベ	ルの目安	未到達レベルの目安		
評価項目1 (A-2,D	-1, D-2)		イオテクノロジ [.] ができる.	関する知識を, バーに適用すること	基礎的な生物に関する知識がバオテクノロジーに適用しているを理解することができる.		基礎的な生物に関する知識を, バイオテクノロジーに適用することができない.		
評価項目2 (A-2,D	-1, D-2)		の方法の原理を	ジーについて, そ 理解し, 説明でき	バイオテクノロジーについて, そ の方法の原理を理解できる.		バイオテクノロジーについて, そ の方法の原理を理解できない.		
評価項目3 (A-2, D-1, D-2)			バイオテクノロ: る影響について ³ る.	ジーが社会に与え 理解し,説明でき	社会に与え 説明でき ぶ影響について理解できる.		バイオテクノロジーが社会に与える影響について理解できない.		
評価項目4 (A-2,D-1,D-2)				よびその応用方法 理解し,正確に説	微生物の働きおよ についてほぼ正確 正確に説明できる	に理解し、ほぼ	微生物の働きおよびその応用方法 について理解できない.		
評価項目5 (A-2, D-1, D-2)			概主物火音と前脚刀法について正 確に理解し、正確に説明できる		微生物災害と制御方法についてほぼ正確に理解し,ほぼ正確に説明できる.		微生物災害と制御方法について理 解できない.		
学科の到]達目標項	頁目との関係	Ŕ						
教育方法	 法等								
概要		学, タンハ	(ク質工学, 植物・	動物におけるバイス	オテクノロジーの仕	組みについて理			
授業の進め	か方・方法	講義は対話 ・	方式で行うため, 	頻繁に学生に質問す	する. また, 講義中 	!わかりにくいと 	ころがあれば, 気軽に質問すること		
・総時間数 注意点 ぬ, および ・評価につ			ログラムの学習・教育到達目標の各項目の割合は, A-2(50%), D-1(25%), D-2(25%) とする. (30時間 (自学自習30時間) は、日常の授業 (60時間)のための予習・復習、理解を深めるための演習課題の考察・まで期試験のための学習を総合したものとする. しいては、合計点数が60点以上で単位修得となる。その場合、各到達目標項目の到達レベルが標準以上であげログラムの学習・教育到達目標の各項目を満たしたことが認められる.						
授業計画									
		週			· ·				
前期	1stQ	4./E	応用微生物工業遺伝子操作の基础	(1)(富樫) 楚(1)(杉本)	В , ,	・微生物の生育系 かできる。 ・微生物の分離, 説明できる。 ・有用微生物の改 説明できる。	条件(生育環境と栄養)を理解し、説 培養、保存に関わる技術を理解し 対良・育種技術、安全対策を理解し ファージがどのようにベクターとして		
		2週	応用微生物工業遺伝子操作の基础	(2)(富樫) 楚(2)(杉本)	日 · · ·	・微生物の生育条件(生育環境と栄養)を理解し,説明できる. ・微生物の分離,培養,保存に関わる技術を理解し,説明できる. ・有用微生物の改良・育種技術,安全対策を理解し,説明できる. ・プラスミドとファージがどのようにベクターとして利用されているかを理解できる.			
		3週	応用微生物工業 遺伝子操作の基础	月 , , , ,	・微生物の生育条件(生育環境と栄養)を理解し、説明できる。 ・微生物の分離、培養、保存に関わる技術を理解し、説明できる。 ・有用微生物の改良・育種技術、安全対策を理解し、説明できる。 ・細胞からDNAを取り出す方法を理解し、操作を行うことができる。 ・制限酵素などの遺伝子組換えで用いる酵素の働き、性質を理解できる。 ・DNAの細胞内への導入方法について理解できる。				

			・ES細胞の応用とその作成技術
	13週	・微生物災害と微生物制御(1)(富樫) ・動物細胞におけるバイオテクノロジー(1)(杉本)	・微生物災害を理解し、説明できる。 ・微生物の防除技術を理解し、説明できる。 ・薬剤耐性菌の発現と対策を理解し、説明できる。 ・受精卵の分割によるクローンの作成 ・細胞の分化 ・クローンヒツジ"ドリー"の作成 ・ 医薬品を合成する遺伝子組換え動物
2ndQ	12週	・環境浄化と微生物利用(2)(富樫)・植物におけるバイオテクノロジー(2) (杉本)	・物質循環と微生物の役割を理解し、説明できる。 ・微生物利用の環境修復技術を理解し、説明できる。 ・汚染物質の微生物分解のしくみを理解し、説明できる。 ・汚染物質の微生物分解のしくみを理解し、説明できる。 ・製品化されている遺伝子組換え植物 ・遺伝子組換え作物の問題点 以上項目の概要を理解し、バイオテクノロジーが従来 の技術に対して優れている点について説明できる。また、遺伝子組換え技術のリスクと安全策について説明できる。
	11週	環境浄化と微生物利用(1)(富樫)植物におけるバイオテクノロジー(1)(杉本)	・物質循環と微生物の役割を理解し、説明できる。 ・微生物利用の環境修復技術を理解し、説明できる。 ・汚染物質の微生物分解のしくみを理解し、説明できる。 ・植物の遺伝子組換え方法について理解できる。
	10週	・応用微生物工業(9)(富樫) ・タンパク質工学(2)(杉本)	・微生物の有機及応べの応用を理解し、説明できる。 ・微生物の酵素生産・酵素利用を理解し、説明できる。 ・微生物培養・物質生産用原料を理解し、説明できる。 ・クンパク質の立体構造解析におけるX線結晶解析と NMR法の長所と短所を理解することができる。
	9週	・応用微生物工業(8) (富樫)・遺伝子操作の基礎(8) (杉本)・タンパク質工学(1) (杉本)	・微生物の解系主産・解系利用を理解し、説明できる ・微生物培養・物質生産用原料を理解し、説明できる ・タンパク質工学の概要を理解できる。 ・微生物の有機反応への応用を理解し、説明できる。
	8週	中間試験	・微生物の有機反応への応用を理解し,説明できる.・微生物の酵素生産・酵素利用を理解し,説明できる
	7週	・応用微生物工業(7)(富樫)・遺伝子操作の基礎(7)(杉本)	・微生物の酵素生産・酵素利用を理解し、説明できる ・微生物培養・物質生産用原料を理解し、説明できる ・ DNAの塩基配列決定の原理を理解できる.
	6週	・応用微生物工業(6)(富樫) ・遺伝子操作の基礎(6)(杉本)	・微生物の生育条件(生育環境と栄養)を理解し、説明できる。 ・微生物の分離、培養、保存に関わる技術を理解し、説明できる。 ・有用微生物の改良・育種技術、安全対策を理解し、説明できる。 ・PCR の原理を理解し、その応用(PCRクローニングなど)を考えることができる。 ・微生物の有機反応への応用を理解し、説明できる。
	5週	・応用微生物工業(5)(富樫) ・遺伝子操作の基礎(5)(杉本)	・微生物の生育条件(生育環境と栄養)を理解し,説明できる. ・微生物の分離,培養,保存に関わる技術を理解し,説明できる. ・有用微生物の改良・育種技術,安全対策を理解し,説明できる. ・電気泳動法を理解し,サザンハイブリダイゼーションなどのDNA分析方法について説明できる.
	4週	・応用微生物工業(4)(富樫) ・遺伝子操作の基礎(4)(杉本)	・微生物の生育条件(生育環境と栄養)を理解し、説明できる。 ・ 説明できる。 ・ 有用微生物の改良・育種技術、安全対策を理解し、説明できる。 ・ 有用微生物の改良・育種技術、安全対策を理解し、説明できる。 ・ ・ pUC系プラスミドを用いてのカラーセレクションの仕組みについて理解できる。 ・ ・ cDNAライブラリー、ゲノムライブラリーについて理解できる。

 分類
 分野
 学習内容
 学習内容の到達目標
 到達レベル
 授業週

 専門的能力
 分野別の専門工学
 化学・生物系分野
 生物工学
 抗生物質や生理活性物質の例を挙げ、微生物を用いたそれらの生産方法について説明できる。
 4
 前4,前5,前6,前7,前9,前10

				微生物を用い 明できる。	た廃水処理・バー	イオレメディエーシ	ションについて説	4	前11,前12
				遺伝子組換え	遺伝子組換え技術の原理について理解している。				前1,前2,前 3,前4,前 5,前6,前 7,前11,前 12,前13,前 14
	バイオテクノロジーの応用例(遺伝子組換え作物、医薬品、遺伝子治療など)について説明できる。					勿、医薬品、遺伝	4	前9,前 10,前11,前 12,前13,前 14	
				バイオテクノロジーが従来の技術に対して優れている点について 説明できる。 遺伝子組み換え技術のリスクと安全策について説明できる。				4	前9,前 10,前11,前 12,前13,前 14
								4	前11,前 12,前13,前 14
評価割合								•	·
	試験		レポート				その他	4	計
総合評価割合	合 80		20	0	0	0	0	1	00
基礎的能力	基礎的能力 0		0	0	0	0	0	0	
専門的能力	80		10	0	0	0	0	9	0
分野横断的能力 0			10	0	0	0	0	1	0