八百	 □工業高領	 等専門学校	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		授業科目	 計測工学(1070)		
科目基礎			- 1	1/~/				
科目番号		5M17		科目区分	専門 / 必修	専門 / 必修		
授業形態	ŧ	講義		単位の種別と単位	,			
開設学科	ł	産業シス	ステム工学科機械システムデザインコー	対象学年	5			
開設期		秋学期(3rd-Q)	週時間数	3rd-Q:4			
教科書/教	教材		学/谷口修、掘込康雄共著/森北出版					
担当教員	Į	郭 福会						
到達目	標							
測定誤差	の分類とそ		り扱いを理解し、標準偏差などの意味を できること.	説明できること。				
ルーブ	リック							
			理想的な到達レベルの目安	標準的な到達レベ	ルの目安	未到達レベルの目安		
評価項目	11		計測に必要な単位・基準,計測方式,計測の誤差とその処理について理解でき,応用ができる.	計測に必要な単位・基準,計測方式,計測の誤差とその処理について理解できる。		計測に必要な単位・基準,計測方式,計測の誤差とその処理についての基礎を理解できない。		
評価項目	12		計測系の構成、インピーダンス整合、増幅回路について理解でき、 応用できる。	計測系の構成、イ 合、増幅回路につ 。	ンピーダンス整 いて理解できる	計測系の構成、インピーダンス整合、増幅回路について理解できない。		
評価項目	13		機械的拡大、光による拡大、流体 的拡大、電気的拡大に関する測定 原理を理解できる。測定機器の構 成を説明でき、応用できる。	広大、電気的拡大に関する測定 「機械的拡入、元による拡入、パロ゚ 関を理解できる。測定機器の構 「商班を理解できる。測定機器の構 「原理を理解できる。測定機器の構 「原理を理解できる」説明できま				
学科の	到達目標	項目との	関係					
ディプロ	· ・マポリシー	DP2 O デ	ィプロマポリシー DP3 ◎					
教育方法	<u></u> 法等							
概要		【開講: 最近の記 きた、工 測定原理	日した新しい計測》 かれる計測の基礎理解を深める。これ でしている。	法が次々に使用されるようになって 理論と各物理量の測定法について学 1らの授業を通して様々な測定器の				
授業の進	め方・方法	前半は	計測の基礎的事項、すなわち測定データ は機械的計測、光学的計測、流体的計測	の誤差とその統計的	取り扱いについて	て学ぶ.		
注意点		ること. 成績評(する。	は誤差がつきものであり,また電気的変また単に測定器の名称を記憶するので あの方法:到達度試験70%、課題等30% では原則として実施しないが,事情によ	ではなく,様々な測定 %の割合で評価する。	2器の測定原理や係 、総合評価は、10	言号変換原理の理解に努めること. 00点満点として、60点以上を合格と		
授業の	属性・履	修上の区分	ं रे					
□ アク:	ティブラー	ニング	□ ICT 利用	□ 遠隔授業対応		□ 実務経験のある教員による授業		
授業計	雨							
<u> </u>		週	授業内容	11	型ごとの到達目標 過ごとの到達目標			
			測定と単位系					
		1週	調差の統計的扱い 間接測定における誤差	=	できる。平均値と標準偏差を求めることができる。 間接誤差を理解し求めることができる。測定データの			
		2週	最小自乗法	<u>⅓</u>	近似直線を求めることができる。 熱伝対を用いた計測系(偏位法、零位法)の構成を理			
後期		3週	計測系の構成(熱電対による温度測定 インピーダンス整合	=/ 角	解し説明することができる。インピーダンス整合を説明することができる。			
		4週	演算増幅器 ブリッジ回路		増幅回路を理解し、出力を求めることができる。			
		5週	長さの測定 機械的拡大 光による拡大	それ	ブロックゲージ・バー二ヤ方式を説明することができる。系統誤差の分類を説明することができるし、誤差を求めることができる。くさびによる拡大・ねじによる拡大・てこによる拡大・歯車による拡大・でした歯車を使った拡大・平行薄片による拡大・ねじり薄片による拡大の原理を理解し説明できる。 光てこによる拡大・光干渉による拡大・レーザ光走査測長機・光学式パルススケールの原理を理解し説明できる。			
後期	3rdQ		THE OF SHAPE	デ デ	光てこによる拡大 測長機・光学式パ	理解し説明できる。 ・光干渉による拡大・レーザ光走査		
後期	3rdQ	6週	流体的拡大電気的拡大	デルラ ジラ U フ im A	代でこによる拡大 利長機・光学式パ きる。	理解し説明できる。 ・光干渉による拡大・レーザ光走査ルススケールの原理を理解し説明でロメータ・液柱圧力計・ピトー管・流量計・超音波流量計の原理を理解量を求めることができる。 熱電対の熱起電力・交流電気式回転・サーミスタ・差動変圧器・コンディクロホン・光電式ピックアップの		
後期	3rdQ	6週	流体的拡大	光彩 言 対党 し 対害 2 原 ラナー 言	そでは、 ・ で で で で で で で で で で で で で で で で で で で	理解し説明できる。 ・光干渉による拡大・レーザ光走査ルススケールの原理を理解し説明でロメータ・液柱圧力計・ピトー管・流量計・超音波流量計の原理を理解量を求めることができる。 熱電対の熱起電力・交流電気式回転・サーミスタ・差動変圧器・コンディクロホン・光電式ピックアップの		

モデルコアカリキュラムの学習内容と到達目標												
分類		分野	学習内容	学習内容の到達目標			到達レベル	授業週				
専門的能力	分野別の専 門工学			計測の定義と種類を説明できる。			4					
		機械系分野		測定誤差の原因と種類、精度と不確かさを説明できる。			4					
			予計測制御	国際単位系の構成を理解し、SI単位およびSI接頭語を説明できる。			4					
				代表的な物理量の計測方法と計測機器を説明できる。			4					
評価割合												
試験70%					課題と取り組み30%	合計						
総合評価割合 70			70		30	100						
基礎的能力 0				·	0	0						
専門的能力 70				30 100		100						
分野横断的能力 0			0		0							