八戸	工業高	手専!	門学校		開講年度	平成30年度 (2	2018年度)	授	業科目	幾械材料	学 I A(108	37)	
科目基础	楚情報												
科目番号		0318					科目区分		専門 / 必修				
授業形態		-	講義				単位の種別と単位	位数	履修単位: 1	_			
開設学科	学科 産業システ. ス			テムコ	[学科機械シブ	ステムデザインコー	対象学年	才象学年 3					
開設期前期						週時間数 2							
				る材料		 毎ほか /森北出版							
担当教員		-	古谷 一幸	<u> </u>									
到達目	 票												
機械材料	としての金	属材料	料を基礎	からき	学び,性質・特	持性を理解し,設計	条件を満足する材	料の選	択ができるよ	うになる	こと.		
ルーブ!	リック												
			理	想的な到達レ	ベルの目安	標準的な到達レ	標準的な到達レベルの目安 未到達し			達レベルの目安			
評価項目1						の金属材料の基礎 理解し、応用でき					機械材料としての金属材料の基礎 1性質・特性を理解できない。		
評価項目2					計条件を満足 ができる。	する最適材料の選	設計条件を満足 [*] 択ができる。	設計条件を満足する候補材料の選 材料の誤 択ができる。			択ができない	0	
学科の3	到達目標	項目	との関	係									
学習・教	 育到達度目	標 D	P2 学習	・教育	到達度目標 [DP3							
教育方法	法等												
	め方・方法	t : 13	切な材料学を専攻 がの修得 鉄材料に 金属材料 で14回 本科目は	の選択 する	Rが,高精度 学生にといる。 目指している。 で学び,材料の といな性質を る。学期末に 科目である。	料は、システムの寸: ・高性能な機械シス・ 重要な科目で必修場 具体的には、金属 の適切な選択ができ 学ぶとともに、基本 到達度試験を1回実 その旨十分に留意し	テムを製作するた 科目である。本講 材料の一般的な性 ることを目標とす 的は平衡状態図及 施する. ながら授業に臨む	めには 義は学習 質, 冶3 る. び各種 ^は	必要不可欠で 習教育目標の 金的特性,機 機械的特性等	ある. 従っ) 『得意と 械的特性, について*	って,本講義する専門分野、熱処理,鉄	は,機械工の知識と技調材料,非週2回、全部	
注意点	_	į	必須であ	るごと	こから, 関連	科目と連動しながら	学習すること.	'					
授業計画	–	-		Ι.				Ι.					
		週			業内容			週ごとの到達目標					
		1边	1週 金属		属の結晶構造			機械材料に求められる性質を説明できる。					
		2近	2週 合金		6の結晶構造			金属と合金の結晶構造を説明できる。 塑性変形の起りかたを説明できる。					
		3返	3週 二		元合金の平衡状態図			合金の状態図の見方を理解できる。 金属と合金の状態変化および凝固過程を説明できる。					
	1stQ	4近	4週 代表		長的な平衡状態図の例			合金の状態図の見方を理解できる。					
		 5₩	5週 引張)特性		引張試験の方法を理解し、応力ひずみ線図を説明でき						
			6週 硬さ					る。 硬さの表しかたおよび硬さ試験の原理を説明できる。					
			-		- ² 値と吸収エネルギー			使さの表しかにあるが使き試験の原理を説明できる。 衝撃試験による粘り強さの試験方法を説明できる。					
2 H B		7万 8词			生とその改善								
前期		9近		疲れる		<i>/</i> Δ						0	
	I		2 週		はなるとその試験法			疲労の意味を理解し説明できる。 疲労試験とS-N曲線を説明できる。					
		11		疲れ強さるの各種				疲れ強さへの各種因子の影響について説明できる。					
		12		低温		四丁卯が目			性について記			1000	
	2ndQ				別加工による硬化と高温加熱による軟化			加工硬化と再結晶がどのような現象であるか説明できる。					
		14	14週 クリ- 15週 到達原		ープ			機械的性質と温度の関係およびクリープ現象を説しきる。			象を説明で		
		15			度試験			60点以上。					
		16	-										
モデル	コアカリ	キユ		学習	内容と到達	桂目標					T	ı	
分類			分野		学習内容	学習内容の到達目					到達レベル	授業週	
						機械材料に求められる性質を説明できる。 金属材料、非金属材料、複合材料、機能性材料の性質と用途を説				4	前1		
						金属材料、非金属物のできる。	材料、複合材料、	機能性材	材料の性質と	用途を説	4	前1,前2	
						引張試験の方法を理	理解し、応力-ひす	み線図	を説明できる		4	前5	
						硬さの表し方および	び硬さ試験の原理	を説明で	できる。		4	前6	
専門的能力	カー カー分野別 カー門工学	の専 :	専 機械系分野		材料	脆性および靱性の意味を理解し、衝撃試験による粘り強さの試験 方法を説明できる。			さの試験	4	前7,前8,前 12		
	, , ,					疲労の意味を理解し、疲労試験とS-N曲線を説明できる。			o	4	前9,前 10,前11		
						機械的性質と温度の関係およびクリープ現象を説明できる。			る。	4	前14		
						金属と合金の結晶構造を説明できる。			4	前2			
						金属と合金の状態変化および凝固過程を説明できる。			4	前3			
					合金の状態図の見方を説明できる。					4	前3,前4		

	塑性変形の起り方を説明できる。							前2
			加工硬化と再結晶がどのような現象であるか説明できる。					前13
評価割合								
	試験	発表	相互評価	態度	ポートフォリオ	その他	4	計
総合評価割合	100	0	0	0	0	0	1	00
基礎的能力	0	0	0	0	0	0	0	
専門的能力	100	0	0	0	0	0	1	00
分野横断的能力	0	0	0	0	0	0	0	