						_		1			
	工業高等	専門学校	開講年度	令和03年度 (2	.021年度)	授	業科目	電気基礎Ⅱ(2	2086)		
科目基礎	情報										
科目番号		2E33			科目区分		専門 / 必	•			
授業形態		講義			単位の種別と単位	立数		修単位: 2			
開設学科		産業シス	テム工学科電気情報	対象学年		2					
開設期		通年			週時間数		2				
教科書/教材	प्र	電気・電 会。 教	子計測 阿部 武雄 員作成テキスト(ス	計測 阿部 武雄, 村山 実 (著) 森北出版; 第3版。入門 電磁気学 東京電機大学(編集) 東京電機大学と 作成テキスト(スライド)、配布資料							
担当教員		中ノ 勇人	、,角館 俊行								
到達目標	Ę										
電圧、電流 任意の位相 簡単なL,C, 電荷と電界	E、抵抗、電 B、実効値を Rを含む回路 Pの関係、電	力の測定原 もつ正弦波 路における 流と磁界の	差の定義、単位の成理を説明できる。 理を説明できる。 電圧(電流)のフェー 電流・電圧の計算を 関係の概略を説明て 界の計算ができる。	-ザ表示ができる。 ⁻	その逆もできる。						
ルーブリ	ラク										
			理想的な到達レイ	 ベルの目安	標準的な到達レベルの目安			未到達レベルの	D目安		
計測・計器	}		計測方法(計器) き、実践するこ	について説明で とができる。			計測方法(計算	器)について説明で			
電圧、電流理	· 抵抗、電	力の測定原	電圧、電流、抵抗 理について説明 とができる。	亢、電力の測定原 でき、実践するこ				電圧、電流、打理について説明	電圧、電流、抵抗、電力の測定原 理について説明できない。		
フェーザ表	示		電圧(電流)のフェ	効値をもつ正弦波 ェーザ表示、およ がうことなくでき	電圧(電流)のフコ	はその逆のどちらかはまちがう		電圧(電流)のこ	実効値をもつ正弦波 フェーザ表示、もし どちらも確実にはで		
L,C,R回路				フェーザ表示を用	L,C,Rを含む直列、並列回路のうち 、特定のものは電圧、電流をフェ ーザ表示を用いて計算できる。		り、ごく限られた 電流をフェー! できない。	図の、並列回路のうちにものしか、電圧、 でものしか、電圧、 が表示を用いて計算			
電荷、電流	t、電界、磁	堺	電荷と電界の関係の概略を説明係の概略を説明	系、電流と磁界の 明できる。	電荷と電界の関係、電流と磁界の 関係のどちらかならその概略を説 明できる。		電荷と電界の 関係のどちら きない。	関係、電流と磁界の ちその概略を説明で			
クーロンの	法則		クーロンの法則を用いた簡単な電 界の計算ができる。		クーロンの法則は理解しているが 、電界の計算ができないこともあ る。		クーロンの法則 解していない。	クーロンの法則を雰囲気でしか理 解していない。			
学科の到	達目標項	目との関	係								
ディプロマ	マポリシー!	DP2◎ ディ	プロマポリシー DF	23⊚							
教育方法	等										
電気情報工 3つの話題 1:電気 1:電気 2:交流回 その簡単な 3:電 3)電が 3)で 歩的な法則			デコースの教育目標の一つは、電気工学の専門基礎に関する知識を身に付けることである。本科目では、 園について学ぶ。 ・測、単位系、アナログ計測法について学び、正しい測定法、データ処理法を身につけることを目標とする。 別路の基礎知識として、正弦波の回路における電圧、電流の振る舞いについて記述するためのフェーザ表示と は応用技術を身に着けることを目標とする。 気学の初歩の入門として、電荷、電流、と電界、磁界の関係についての知識を獲得し、クーロンの法則など初 別を用いて計算する技術を習得することを目標とする。 別、夏学期週2時間、秋学期週2時間、冬学期週4時間								
授業の進め	方・方法	念を学習 上の1, 到達度試 試験の場	の手法や単位系につする。理解度を確か 2,3の題目3つに 験80%、小テスト 合は、試験の点数の 目についての平均点)めるために簡単なだついて、それぞれ、 こついて、それぞれ、 ・演習・課題など)みで60点以上を	寅習問題(小テス 2 0 %として評価 6 0 点とする。	ト)を行	うう。		電磁気の初歩の概 して、評価する。補充		
注意点		関数電卓	(オームの法則)や を持参してくること た問題を解くだけで								
授業の属	性・履修	上の区分									
□ アクテ	ィブラーニ	ング	□ ICT 利用		□ 遠隔授業対応	<u>v</u>		□ 実務経験の)ある教員による授業		
以未可但	1	週				油ブレ	 の到達目	<u> </u>			
前期	1stQ	<u>週</u> 1週	וא או א א א			رسات ((シンエリモロイ				
		2週									
		3週									
		4週									
		5週									
		5週 6週									
		7週									
		8週									
	2ndQ	9週	正弦波交流回路(直 、角周波数)	、周波数、周期							

		10ì	囯	カラギ カラボ	カカ海羽 1					
				複素数の復習 1 正弦波電圧、電流(初期位相、位相差、最大値、瞬時						
		11ì			· 然次電圧、電流(初期位相、位相差、最大値、瞬時 i、実効値)					
		12ì	周	複素数	数の復習 2					
		13ì	周	周期 正弦》	変量の平均値 皮関数のフェ					
		14ì	_	容量素	回路素子(抵 素子、電源) 安交流に対す					
		15ì		演習						
		16ì	周		関数形式と単作					
		1週		フェ-	-ザ表示され	た正弦波関数の微分と積分				
	3rdQ	2週			ムの法則、キ					
		3週]	単一回	ーザ表示を用いた、 回路素子(抵抗素子、インダクタンス素子、静電 素子、電源) 、電圧と電流の関係					
		4週	<u>l</u>	演習						
		5週	5週 キル1 回路約		/ヒホッフの方程式を用いた、フェーザ表示による 網のインピーダンス計算					
		6週		共振回	回路 1					
		7週			回路 2					
		8週		4	3路:到達度 : 計測概念	試験(答案返却とまとめ)				
後期		電磁気		ā: 電荷						
15277		10ì	電磁等		: 各種計器 え: 電荷と					
		11ì			: 単位系 え: 電流と					
		12ì			: 電圧・電流 気: クーロ					
	4thQ	13週 の拡え		リ: 倍率器・分流器を用いた電圧・電流の測定範囲 法大手法 法気: アンペールの法則						
		14週 計測電磁気		則:抵抗・インピーダンスの測定方法 磁気: 電気と磁気の関係						
		15ì			: 電力・電力: 気: 電磁誘					
		16ì	周	計測	: 到達度試験	(答案返却とまとめ) 験(答案返却とまとめ)				
モデルニ]アカリキ	-그 ⁻	ラムの	学習	内容と到達	桂目標				
分類			分野		学習内容	学習内容の到達目標	到達レベル	授業週		
						クーロンの法則が説明できる。	4			
				物理	電気	クーロンの法則から、点電荷の間にはたらく静電気力を求めることができる。	4			
基礎的能力	7 自然科学	Ź	物理			オームの法則から、電圧、電流、抵抗に関する計算ができる。	4			
						抵抗を直列接続、及び並列接続したときの合成抵抗の値を求める	4			
						ことができる。 電荷と電流、電圧を説明できる。	4			
						オームの法則を説明し、電流・電圧・抵抗の計算ができる。	4			
						キルヒホッフの法則を用いて、直流回路の計算ができる。	4			
						合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができる。	4			
						ブリッジ回路を計算し、平衡条件を求められる。	3			
						正弦波交流の特徴を説明し、周波数や位相などを計算できる。	4			
						平均値と実効値を説明し、これらを計算できる。	4			
					電気回路	正弦波交流のフェーザ表示を説明できる。	4			
専門的能力						R、L、C素子における正弦波電圧と電流の関係を説明できる。	4			
	分野別 <i>の</i> 門工学	の専 電気・ 系分野	電気・	気・電子 分野		瞬時値を用いて、交流回路の計算ができる。	4			
	11777		ホルギ			フェーザ表示を用いて、交流回路の計算ができる。	4			
						インピーダンスとアドミタンスを説明し、これらを計算できる。 キルヒホッフの法則を用いて、交流回路の計算ができる。	4			
						合成インピーダンスや分圧・分流の考え方を用いて、交流回路の 計算ができる。	4			
						直列共振回路と並列共振回路の計算ができる。	4			
			i .				+			
						電荷及びクーロンの法則を説明でき、点電荷に働く力等を計算でしまる。	4			
					電磁気	きる。 電界、電位、電気力線、電束を説明でき、これらを用いた計算が	4			
					電磁気	් වි				

			コンデンサの直列接 計算できる。	終続、並列接続を説明し、その合成	静電容量を	4	
	L		静電エネルギーを説	4			
			計測方法の分類(偏位法/零位法、直接測定/間接測定、アナログ 計測/ディジタル計測)を説明できる。			4	
		計測	精度と誤差を理解し 処理が行える。	4			
			SI単位系における基	4			
			計測標準とトレーサビリティの関係について説明できる。				
			指示計器について、 用する方法を説明で	4			
			倍率器・分流器を用 て説明できる。	4	前5,前6		
			電圧降下法による抵抗測定の原理を説明できる。				
			ブリッジ回路を用いたインピーダンスの測定原理を説明できる。				
			有効電力、無効電力、力率の測定原理とその方法を説明できる。				
			電力量の測定原理を説明できる。				
			オシロスコープの動	4			
評価割合							
	試験		小テスト・演習・課題など 合計				
総合評価割合	80	80		20 100			
基礎的能力	0	0		0 0			
専門的能力	80	80		20 100			
分野横断的能力	0	0		0 0			