	三工業高等	專門学校	開講年度 平成30年度 (2	2018年度)	授業	業科目	材料化学(5241)		
	礎情報								
科目番号	<u> </u>	0087		科目区分]	専門 / 必	%修		
受業形態	Ŕ	講義		単位の種別と単位	位数 :	<u>r</u> : 2			
開設学科	4	産業シブ コース	ステム工学専攻マテリアル・バイオ工学	対象学年 専2		専2			
開設期前期				週時間数 2		2			
教科書/勃	 教材	入門無機		<u>.</u> くみ図解シリーズ3	金属材料	が一番れ	ンかる/三木貴博監修/技術評論社/201		
旦当教員			章,新井 宏忠						
到達目		12.40.	.,						
.結晶の)対称性やブ [:]	ラベ格子など 性質とその原		ざまな機能性発現	について	説明がと	出来ること。		
	リック								
	<i></i>		理想的な到達レベルの目安	標準的な到達レ/	ベルの日		未到達レベルの目安		
			磁性材料や発光材料について、機	教科書等の参考			1 - 1 - 1 - 1 - 1 - 1 - 1		
材料の機能性発現			版性が付けまた材料について、機能性発現のメカニズムを説明できる。	材料や発光材料のカニズムを説明で	の機能性		磁性材料や発光材料の機能性発現 について説明できない。		
材料の合	战技術		薄膜や微粒子材料の合成技術について説明できる。	教科書等の参照情報により、薄膜 や微粒子材料の合成技術について 説明できる。			教科書等の参照情報を参照しても 、薄膜や微粒子材料の合成技術に ついて説明できない。		
金属材料	め結晶構造		金属結晶構造の原子配置を説明でき、充填率、配位数等の計算ができる。	教科書等の参考性 結晶構造の原子で 充填率、配位数等	配置を説	明でき、	、金属結晶構造の原子配置を説明		
乾式製錬	<u> </u>		乾式製錬の原理を自由エネルギー 変化から説明できる。加えて、乾 式製錬の特徴を説明できる。	教科書等の参考性製錬の原理を自由から説明できる。 錬の特徴を説明で	由エネル・加えて	ギー変化)		
湿式製錬	Ē		湿式製錬の原理を酸化・還元反応、酸・塩基反応を用いて説明できる。加えて、湿式製錬の特徴を説明できる。	教科書等の参考性製錬の原理を酸付 ・塩基反応を用い加えて、湿式製金 きる。	化・還元 ハて説明	反応、酸 できる。	、 温式製錬の原理を酸化・還元原 ・ 歴 ・ 特基原序を開いて説明		
電解製錬	Į.		電解製錬の原理を酸化・還元反応 (アノード・カソード反応)、を 用いて説明できる。加えて、電解 製錬の特徴を説明できる。	教科書等の参考情報により、電解 製錬の原理を酸化・還元反応(ア ノード・カソード反応)、を用い て説明できる。加えて、電解製錬 の特徴を説明できる。			教科書等の参考情報を参照しても 、電解製錬の原理を酸化・還元反 応(アノード・カソード反応)、 を用いて説明できない。		
	到達目標以		· 图係				•		
	文育到達度目標 13世紀	际 DP3							
教育方	<u> </u>	F. 1991.							
既要		る。この	の発展は最近特に著しく、化学、電気 D講義では、固体材料の結晶構造と材料 こいる磁気材料や発光材料、金属材料な	などの特性につい	て学ぶと	:共に、4	等あらゆる分野に新素材を提供してい 今日の工業技術の中でも中心的な役割		
1.固体の よび超伝 2.金属全 (補充試 授業の進め方・方法 ○評価方 ・定期試 ・答案お			結晶構造についてX線結晶学の基礎を交えながら講義を行う。また、固体材料の中でも多用されている磁性体を 導材料の特性や無機材料の合成技術について学ぶ。 般の一般的性質(強度・物性など)や加工方法と代表的な金属素材の特徴について学ぶ。 験の場合は、試験の点数のみで合格となる。) 						
2. 各自の			で学習した化学や物理の知識が基礎になるので、必要に応じて復習および補強しなければならない。 の専門分野と関連づけて考察することが必要。 的な「材料」の重要性に対する関心を常に持ち、認識を深めること。						
-222 31. 1 − 1		・日子	1習は試験にて評価する。						
受業計	<u> </u>	I.m	le w						
前期		週	授業内容		週ごとの	り到達目	宗		
	1	1週	結晶構造						
	1	2週	磁性材料						
	1	3週	超伝導材料						
	1+0	4週	無機発光材料						
	1stQ	5週	セメント						
	1	6週	無機材料合成技術(薄膜)						
	1	7週	無機材料合成技術に関する演習						
	1	8週							
			金属材料の基礎						
	1	9週	鉄の歴史						
	1	10週	鉄・鉄鋼の製造(乾式製錬)						
	2ndQ	11週	鉄・鉄鋼の加工技術						
	ZiluQ	12週	非鉄金属に関する概説						
	1	13週	新機能材料に関する概説		<u> </u>				
	1	1/個	公托,期 丰到凌度試験		l				

14週

総括・期末到達度試験

			末到達度試験の答案返却とまとめ						
	-	.6週							
モデルコス	アカリキニ	ュラムの学習	引内容と到達	性目標					
分類		分野	学習内容	学習内容の到達目標				到達レベル	授業週
				代表的な金属やプラスチックなど有機材料について、その性質、 用途、また、その再利用など生活とのかかわりについて説明でき る。		の性質、 説明でき	4		
				洗剤や食品添加物等の化学物質の有効性、環境へのリスクについ て説明できる。		クについ	1		
				物質が原子からでき	-			4	
				単体と化合物がどのようなものか具体例を挙げて説明できる。		きる。	4		
				同素体がどのようなものか具体例を挙げて説明できる。			2		
				純物質と混合物の区別が説明できる。		\ +	2		
				昆合物の分離法について理解でき、分離操作を行う場合、適切な 分離法を選択できる。		1			
				物質を構成する分子・原子が常に運動していることが説明できる。			2		
				水の状態変化が説明できる。			2		
				物質の三態とその状態変化を説明できる。			2		
				原子の構造(原子核説明できる。	構造(原子核・陽子・中性子・電子)や原子番号、質量数を きる。		3		
				同位体について説明できる。				2	
				放射性同位体とその代表的な用途について説明できる。			1		
				原子のイオン化について説明できる。				3	
				代表的なイオンを化学式で表すことができる。		3			
	自然科学) 化学(一般)	原子番号から価電子の数を見積もることができ、価電子から原子の性質について考えることができる。			1		
基礎的能力		化学(一般)		元素の性質を周期表(周期と族)と周期律から考えることができる。			ができる	2	
				イオン式とイオンの名称を説明できる。			4		
				イオン結合について説明できる。			4		
				イオン結合性物質の性質を説明できる。			4		
				イオン性結晶がどのようなものか説明できる。			4		
				共有結合について説明できる。			2		
				構造式や電子式により分子を書き表すことができる。			1		
				自由電子と金属結合がどのようなものか説明できる。 金属の性質を説明できる。			4		
				アボガドロ定数を理解し、物質量(mol)を用い物質の量を表すこ			たますっ	4	
				とができる。			1		
				分子量・式量がどのような意味をもつか説明できる。				1	
				化学反応を反応物、生成物、係数を理解して組み立てることができる。			ことがで	3	
				化学反応を用いて化学量論的な計算ができる。				3	
				pHを説明でき、pHから水素イオン濃度を計算できる。また、水 素イオン濃度をpHに変換できる。			また、水 	1	
				酸化還元反応について説明できる。			4		
				イオン化傾向について説明できる。			1		
				金属の反応性についてイオン化傾向に基づき説明できる。		1			
				電気分解の利用として、例えば電解めっき、銅の精錬、金属のリサイクルへの適用など、実社会における技術の利用例を説明できる。			2		
	<u> </u>			ا.م،				1	1
評価割合		=-	半 F全		ルニフト・レージ		△≣∔		
公△証/無事/∠			式験 -0		小テスト・レポート 合計 100				
総合評価割合 基礎的能力	1	_	0		0 100				
専門的能力			80		20		100		
分野横断的能	 指力	_	0		0 0				