	───── □工業高等		交 開講年度 平成29年度((2017年度)	拇	業科目	 伝熱工学(1075)	
		<u>ן דרוניי</u>		(二〇:/ 一/又)	ענ ן	<u> ЛПЦ </u>	14/11/14/14/14/14/14/14/14/14/14/14/14/1	
<u>17口坐</u> 科目番号		0120		科目区分		専門 / 必修	X	
授業形態		講義			単位の種別と単位数			
開設学科		1,12,074				履修単位: 5	•	
開設期		集中	-311	週時間数				
教科書/教	 枚材	JSME		 員が作成配布する	プリント	`		
担当教員		小宮 郭	效樹,鎌田 長幸,井関 祐也					
到達目	 標	'						
伝熱の三 計算でき	基本形式の ること。	基本を良く	理解し、それらについて説明できるこ。	と。エネルギー機器	器の省工	ネルギー化で	で必要な伝熱理論の概略を理解し、	
レーノ	リック		田相的な別達しがよの日常	理想的な到達レベルの目安標準的な到達レイルの目安に関する。			土列港レベルの日内	
							未到達レベルの目安 伝熱の基本三形式について説明す	
评価項目	1				伝熱の基本三形式について説明す ることができる.		仏然の基本三形式について説明9 ることができない.	
評価項目	2		エネルギー機器の省エネルギー化 で必要な伝熱理論の概略を理解し 、計算できる.	エネルギー機器 で必要な伝熱理 きる.			エネルギー機器の省エネルギー化 で必要な伝熱理論の概略を計算で きない.	
評価項目	3		伝熱に関する応用問題を解く事が できる.	伝熱に関する基できる。	一礎問題を	を解く事が	伝熱に関する基礎問題を解く事が できない.	
 学科の	到達目標	項目との		1000.			1 5 5 700 11	
	育到達目標							
教育方:	法等							
概要		伝熱工 境保全 伝熱工	学とは、熱移動の学理を追求するものでにおいて重要な学問である。特に機械ご学の理解を深め、地球環境にやさしい	で、熱と関連した科 工学で重要なエネル 欠世代工学の発展に	料学技術 レギー機 ご資する	や産業の発射 器の開発には ものである。	展、さらには省エネルギー・地球環 は不可欠なものである。本授業は、	
授業の進	め方・方法	熱様式	では、熱伝導、対流熱伝達、ふく射伝熱 をさらに深く理解する。これらの伝熱 用機器の設計において、伝熱工学がどの	幾構の基礎的な計算	ができ.	るように、濱	歯習問題を解くことによって理解す	
主意点	_	講義で	修得した知識で実際に小テスト(クイス につけることが重要である。また、エ	ズ)や演習問題を解	弾くこと	こより、各国		
受業計	<u> </u>	週	授業内容		油ブレ	の到達日煙		
		1週	伝熱とは			週ごとの到達目標 伝熱現象について理解し、説明することができる。		
		2週	熱輸送とその様式		独輸送とその様式を理解し、説明することができる。			
		3週	熱力学と伝熱工学との関係		熱力学と伝熱工学の関係を理解し、説明することができる。			
		4週	熱伝導の概要	熱伝導について理解し、計算問題を解くことができる。 。				
	1stQ	5週	定常熱伝導		定常熱伝導について理解し、計算問題を解くことができる。			
		6週	拡大伝熱面とフィン		拡大伝熱面とフィンについて理解し、計算問題を解くことができる。			
		7週	非定常熱伝導		非常熱伝導について理解し、計算問題を解くことができる。			
前期		8週	数値シミュレーションと熱伝導			伝熱における数値シミュレーションについて理解し、 計算問題を解くことができる。		
ן /יי נינ	2ndQ	9週			対流伝熱を理解し、説明することができる。			
		10週	速度境界層と温度境界層		速度境界層と温度境界層の関係について理解し、説明することができる。			
		11週	強制対流熱伝達		することができる。 強制対流熱伝達について理解し、計算問題を解くことができる。			
		12週	自然対流熱伝達		自然対流熱伝達について理解し、計算問題を解くこと ができる。			
		13週	無次元数と対流熱伝達		伝熱工学の無次元数熱について理解し、対流熱伝導の計算問題を解くことができる。			
		14週	数値シミュレーションと対流熱伝達		数値シミュレーションと対流熱伝導の計算問題を解 ことができる。			
		15週						
後期		1週	ふく射熱伝達の基礎過程と黒体放射		ふく射	熱伝導につ	いて理化し、説明することができる	
		2週	実在面のふく射とキルヒホッフの法	則	実在面のふく射とキルヒホッフの法則について理化し、説明することができる。			
	3rdQ	3週	物体間のふく射熱伝達相変化を伴う体	伝熱	物体間		伝達相変化を伴う伝熱について理(
		4週	沸騰熱伝達		沸騰熱伝熱について理解し、説明することができる。			
		5週	凝縮熱伝達		凝縮熱伝導について理解し、説明することができる。			
		6週	熱交換器の基礎		熱交換器の基礎について理解し、説明することができる。			

		7週	実際	祭の熱交換器と	それらの特徴		実際の熱交換器について理解し、説明することができる。						
	8週		熱交換器の設計				熱交換器について理解を深め、設計することができる。						
		9週	伝熱機器と熱抵抗				伝熱機器と熱抵抗について理解し、説明することがで きる。						
		10週	電子機器の冷却				電子機器の冷却について理解し、説明することができる。						
		11週	断熱技術				断熱技術について理解し、説明することができる。						
	4thQ	12週	伝熱	!機器のモデル(化と熱設計		伝熱機器のモデル化と熱設計について理解し、説明す ることができる。						
		13週											
		14週											
		15週											
		16週											
モデルニ	モデルコアカリキュラムの学習内容と到達目標												
分類 分野				学習内容 学習内容の到達目標			到達レベル 授業週						
評価割合													
				試験		出席点および講義中のクイズの平 常点		合計					
総合評価割合				80		20		100					
基礎的能力				0		0		0					
専門的能力				80		20		100					
分野横断的能力				0		0		0					