一関工業高等専門学校		開講年度	平成30年度 (2	018年度)	授業科目	機械・電気工学概論		
科目基礎情報								
科目番号	0023			科目区分	専門/選	訳		
授業形態	講義			単位の種別と単位数	学修単位	<u>:</u> 2		
開設学科	物質化学工学科			対象学年	5	5		
開設期	後期			週時間数	2	2		
教科書/教材	[機械工学概論]なし(自作資料を活用) [電気工学概論] わかりやすい電気基礎(コロナ社)							
担当教員	二階堂 満,八戸 俊貴							
到達目標								

[機械工学概論]

[「然所工子(Will) 3D-CADであるSolidWorksを活用した3Dモデル作成において、自ら考えたオリジナルのモデルを作成することができる能力を育成することを目標とする。 を目標とする。 [電気工学概論] 講義内容を通して身近にある製品が電気工学の技術に支えられていると理解することを目標とする。 【教育目標】C

【学習・教育到達目標 】C-2

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
機械工学概論	Solidworksを用いた部品設計について基本的な操作手順を理解できる。さらに自身で考案した複雑な形状の部品を設計することができる。	Solidworksを用いた部品設計について基本的な操作手順を理解できる。さらに自身で考案した簡易な形状の部品を設計することができる。	Solidworksを用いた部品設計について基本的な操作手順を理解できない。さらに自身で考案した簡単な形状の部品を設計することができない。
電気工学概論 1 (直流回路)	直流回路の役割や計算方法につい て理解し、応用的な計算をするこ とができる。	直流回路の役割や計算方法につい て理解し、初歩的な計算をするこ とができる。	直流回路の役割や計算方法につい て理解できない。さらに基本的な 計算をすることができない。
電気工学概論 2 (電磁誘導、静電誘導)	電流と磁気との関連について理解 した上で、電磁誘導、静電現象を 理解することができる。さらに応 用的な問題を解くことができる。	電流と磁気との関連について理解 した上で、電磁誘導、静電現象を 理解することができる。さらに初 歩的な問題を解くことができる。	電流と磁気との関連および電磁誘導、静電現象を理解することができない。さらに初歩的な問題を解くことができない。
電気工学概論 3 (交流回路)	交流回路の役割や計算方法につい て理解し、応用的な計算をするこ とができる。	交流回路の役割や計算方法につい て理解し、初歩的な計算をするこ とができる。	交流回路の役割や計算方法について理解できない。さらに基本的な計算をすることができない。

学科の到達目標項目との関係

教育方法等

		[機械上字概論] 近年急速に発達しつつある3D-CADについて入門レベルの操作方法を理解し、複数のモデルの作成を経て3D-CADへの
ı	概要	理解を深める。
١		[電気工学概論]

非電気系学生が知っていなければならない電気工学の基礎についての講義を行う。

授業の進め方・方法

「機械工学概論」 授業の最初に当日修得すべき機能について簡単に説明した後、課題を提示する。その後は各自で課題作成に取り掛かることになる。 [電気工学概論]

教科書に沿って授業を行い、練習問題を解くことで理解を深める。

[機械工学概論] 注意点

注意点 配布資料 (課題も含める) は全てMoodleにアップロードする. また課題提出もMoodleへのアップロードを主とする ため、Moodleの利用について熟知しておくこと. 【事前学習】 教科書を使用しないことから、授業前に資料を確認し、授業内容の把握に努めること. 【評価方法・基準】 課題レポート (100%)で評価する。詳細は第1回目の授業で告知する。 [電気工学概論] 【事前学習】 授業項目に対応する教科書の内容を事前に読んでおくこと。またノートの前回の授業分を復習しておくこと。 【評価方法・基準】 試験結果 (100%)で評価する。 【科目全体における評価方法・基準】 電気分野(50%)、機械分野(50%)で評価する。総合成績60点以上を単位修得とする。

授業計画

注意点

		週	授業内容	週ごとの到達目標		
後期		1週	直流回路1(電圧と電流、回路計算)	直流回路の簡単な計算ができる		
		2週	直流回路 2 (抵抗、電力)	直流回路の簡単な計算ができる		
		3週	電流と磁気、電磁誘導、静電気、静電現象	種々の電気機器に応用されている電磁誘導、静電現象 を理解できる		
	3rdQ	4週	中間試験			
		5週	交流回路1(交流回路の取り扱い、交流回路の電力)	交流回路の簡単な計算ができる		
		6週	交流回路2(記号法による交流回路の取り扱い)	交流回路の簡単な計算ができる		
		7週	期末試験			
		8週	まとめ			
	4thQ	9週	Solidworks概略・基本操作について	3D-CADの概略およびその重要性を理解する。同時に基本操作系について理解する。		
		10週	Solidworks演習 1	スケッチ作業について理解する。		
		11週	Solidworks演習 2	フィーチャー作業(押し出し)およびモデルの修正作業について理解する。		

		12週	Solidworks演	習3	フィーチャー作業(押し出しカット、フィレット、シ ェル)作業について理解する。					
		13週	Solidworks演	習4		フィーチャー作業(回転、回転カット、ミラー、円形 パターン、直線パターン)作業について理解する。				
		14週	Solidworks演	習5		これまでの内容を踏まえた自由課題を作成し、総合的 な造形能力を身に着ける。				
		15週	これまでのま	とめ						
		16週								
モデルコ	モデルコアカリキュラムの学習内容と到達目標									
分類		分野	学習内容	学 学習内容の到達目]標			到達レベル	授業週	
評価割合										
			試験	試験		課題		合計		
総合評価割合			50	50		50		100		
機械工学概論(演習)		0		50	50		50			
電気工学概論(中間試験)		25	25		0		25			
電気工学概論(期末試験)			25	25		0 2		25		