仙台高等専門学校			1	開講年度 平成27年度 (2015年度)			担	 業科目	電気回路	.TV	
科目基礎		·」 」 <u> </u>			「13%47 十1支(4	<u> </u>	1又	<u>未作口</u>	电火心凹陷	TA	
科目番号	に目判	0078				科目区分		専門 / 必	 修		
村田 哲 授業 形態		授業				村日区分 単位の種別と単	当位数	学修単位			
開設学科						対象学年	FITAX	4	. 1		
開設期				<u> </u>		週時間数		1			
						<u>」是的問題</u> 下川、奥村 発行	-				
担当教員	(1)	中村富			<u>, 60.06</u>	1/11 X 13 /11	3//1 : ////	10111/1/			
到達目標	<u> </u>	11.13 E	1/ДД								
抵抗、コー	- イル、コンラ	デンサ素子	におけん	る電圧と電流の		気回路の計算に	用いるこ	とができる	5.		
ルーブリ		こ 理解し、	批止源(は交流回路の計	昇かできる。						
			理	想的な到達レ	ベルの目安	標準的な到達レベルの目]安	未到達レ	ベルの目安	
	評価項目1										
評価項目2						+					
評価項目3											
	引達目標項	目との	関係_								
教育方法	去等										
概要					習を基礎にして、	非正弦波交流の耳	取扱いを	理解するこ	ことができる。	0	
授業の進め	め方・方法	111111	.,	よって理解を深	· · - ·		/ AU ::	,		/ —- ^	16.
注意点				だ電気回路の計 実に身に付ける	算が自在にできる こと。	ようにし、数学	(微積分	・行列他)	、応用数学 	(ラプラス変	換・フーリ
授業計画	<u> </u>	\H	142,1114	.			/B/ -	のかりまっ 。	#5		
	+	週	授業		* 六海		_	週ごとの到達目標			?マキフ
		1週		期関数と非正弦波交流				非正弦波交流とフーリエ級数の関係を理解できる			
		2週3週		三角関数の直交性			三角関数の直交性を理解できる フーリエ係数の計算ができる				
		4週	_	7ーリエ級数展開 7ーリエ級数展開			フーリエ係数の計算ができる 電気回路における高調波の影響を説明できる				
	3rdQ	5週	_			电 北回路にのり る同詞な の影響を 説明 にさる 非正弦波 交流を フーリエ級数 展開することができる					
		6週	_	- リエ級数展開 E弦波の実効値			非正弦波交流をノーリエ級致展開することができる 非正弦波の実効値を求めることができる				
		7週		弦波の実効値			非正弦波の実効値を求めることができる				
		8週		弦放の実効値 み率、波高率、	油形家		ひずみ率、波高率、波形率を求めることができる				
ı		9週	+	<u>の率、波高率、</u> み率、波高率、							
後期		10週		弦波交流回路 <i>0</i>			非正弦波の瞬時電力、有効電力、皮相電力、力率、電流を説明できる				
	4thQ	11週	非正		 D計算		非正弦波交流回路の電流・電力等を求めることがでる				ことができ
		12週	非正	弦波交流回路0	D計算		非正弦波交流回路の電流・電力等を求めることがでる				ことができ
	lang	13週 非正		弦波交流回路の	D計算		非正弦波交流回路の電流・電力等を求めることができる				ことができ
		14週 非		弦波交流回路0	D計算		非正弦波交流回路の電流・電力等を求めることがでる			ことができ	
		15週	期末		□ ▶ 육경특산						
		16週		試験の答案返去							
	コンハリヨ			内容と到達		1775				701-41 - 511	松米田
分類		分野		学習内容	学習内容の到達目		- 1- 1- حد ا	+> L ³ +-= 1 **	゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙	到達レベル	技業週
					正弦波交流の特徴を説明し、周波数や位相などを計算できる。		じさる。	3			
					平均値と実効値を説明し、これらを計算できる。 正弦波交流のフェーザ表示を説明できる。				3		
専門的能力					R、L、C素子における正弦波電圧と電流の関係を説明できる。			 できる	3	+	
					瞬時値を用いて、簡単な交流回路の計算ができる。			(C,0)	3		
					フェーザを用いて、簡単な交流回路の計算ができる。			3			
					インピーダンスとアドミタンスを説明し、これらを計算できる。			3			
)専 電気・ 系分野			正弦波交流の複素表示を説明し、これを交流回路の計算に用いることができる。		3				
	カ 分野別の 門工学		・電子		キルヒホッフの法則を用いて、交流回路の計算ができる。			3			
	11177		± J		合成インピーダンスや分圧・分流の考え方を用いて、交流回路の			3			
					計算ができる。 網目露流法や節占露位法を用いて交流回路の計算ができる			3			
					網目電流法や節点電位法を用いて交流回路の計算ができる。						
	1				重ねの理やテブナンの定理等を説明し、これらを交流回路の計算 に用いることができる。			3			
					直列共振回路と並列共振回路の計算ができる。			1			
					直列共振回路と並	列共振回路の計算	草ができる	3 。		3	
					直列共振回路と並					3	
						、相互誘導回路の					

		RL直列回路やRC直列回路等の単エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。										
		F	RLC直列回路等の複エネルギー回路の直流応答を計算し、過渡応 答の特徴を説明できる。									
評価割合												
	試験	発表	相互評価	態度	ポートフォリオ	その他	合計					
総合評価割合	100	0	0	0	0	0	100					
基礎的能力	0	0	0	0	0	0	0					
専門的能力	100	0	0	0	0	0	100					
分野横断的能力	0	0	0	0	0	0	0					