411	台高等東	 5門学校	開講年度	平成30年度 (2	2018年度)	授業	科目	マテリアル工学実験Ⅱ			
科目基礎情報											
科目番号	CIIJIK	0155				科目区分 専門 / 貞		·····································			
授業形態		実験・	 実習		単位の種別と単位						
開設学科		マテリ	アル環境工学科		対象学年	4					
開設期		通年			週時間数	1	.5				
教科書/教	材		アル環境工学実験書	環境工学実験書							
担当教員	_	佐藤 友	章,武田 光博,熊谷 道	出田 光博,熊谷 進,松原 正樹							
到達目標		FA 1	/E/D -MDT + DV D	-n, , , , , , , , , , , , , , , , , , ,	//						
	材料工学に関する実験のスキル修得と課題を発見・設定し、レポートとしてまとめる能力を高める。 ルーブリック										
ルーノリ	ノツク		T田もりもいないます	理想的な到達レベルの目安標			-	+제소. ベル ク ロウ			
			理想的は到達し	// ハルの日女	標準的な到達レベルの目安 書式に重大な間違いはなく、レポ			未到達レベルの目安			
書式・締ち	切りを順守	できる	レイアウトもき	とく練られており、 されいである。また ・セプション等も適	高いに重くなり返ればなく、レバートしての体裁が整っている。しかしながら、レイアウト、キャプション、文章に不注意が散見されるか読みやすい工夫が感じられない。			締切りが守られていない。 あるい は緒言、方法、結果・考察の構成 の中で大きく脱落しているところ がある。			
結果に対す	する考察		見を参考文献と	して複数の専門書等の知 文献として考察が述べら 、論理性も高い。 結果に対して教科書等の基本的な 知識を基に考察が述べられている 。			盗作・盗用の疑いがある。				
実験中の流	実験中の活動			実験における積極的な関与・発言が見られ、PBLでは主体的に課題設定・解決を図った。 グループ内で与えられたがして真摯に取り組んだ。			か担に関	不注意・ふざけのため危険を誘発 したり、グループの活動を消極的 な言動で停滞させたりし た。			
		項目との									
JABEE C1 JABEE D2 JABEE E1	L 日本語 に 2 専門分野 L 自主的・	より、記述 と周辺の工 継続的に新	・ 発表・討論する 業技術を理解し、デ しい工業技術を学習	ーーーー 能力 ザインに応用展開で する能力							
教育方法	 去等										
概要		キルを	修得し、マテリアル:	工学実験Iで得た実験	結果を整理しまと	める力を	より高度				
材料工学に関する4種類の実験テーマおよびPBL実習をそれぞれ4週に渡って行い、実験・実習を通した実践的な学行う。 野業の進め方・方法 授業の進め方・方法 野高に実習書、参考文献等をよく読み、実験内容を理解した上で実験に臨むこと。その後、実験技術の習得、実験の考察などに関する事項を実験報告書にまとめる。 予習:事前に実習書、参考文献等をよく読み、実験内容を理解する 復習:修得した実験技術ならびに実験結果と考察事項をノートに記録する											
注意点											
授業計画	<u> </u>										
		週	授業内容			週ごとの					
		1週	実験・実習のここ	ろえ	実習の目標と心構 レポートの作成の			見がわかる。 分け方がわかる。			
		2週	実験・実習のここ	 ろえ		災害防止と安全確保のためにすべきことがわかる					
		3週	圧延と再結晶組織		i	安全に圧延加工ができる。					
		4週	圧延と再結晶組織			鋼の熱処理について理解し、適切に熱処理できる。					
	1stQ	5週	圧延と再結晶組織			硬さ試験 。	試験で熱処理と回復・再結晶の関係を理解できる				
		6週	圧延と再結晶組織			光学顕微鏡による組織観察から回復・再結晶組織を説明できる。					
		7週	材料強度試験とミ	クロ組織観察		引張試験 曲線が説		もい試験によって得られる応力ひずみ ら。			
		8週	材料強度試験とミ	クロ組織観察		溶体化熱処理、時効熱処理が説明できる。					
		9週	材料強度試験とミ	クロ組織観察		表計算ソ 重-伸び曲 強さ、降	フトを用 由線デー/ 伏応力を	いて、引張試験によって得られた荷 タから応力-ひずみ曲線を描き、最大 求めることができる。			
前期		10週	材料強度試験とミクロ組織観察				写真と引	張試験データから材料強度と材料組			
	2ndQ	11週	太陽電池の作製と	陽電池の作製と評価			色素増感太陽電池の基本原理・作製方法を理解し、説 明できる。				
		12週	太陽電池の作製と	陽電池の作製と評価			スパッタ装置の使い方を理解し、透明導電膜および太陽電池セルを作製できる。				
		13週	太陽電池の作製と	陽電池の作製と評価			紫外可視分光法を用いて薄膜の吸光度を測定・評価し 、得られたデータから光学特性を説明できる。				
		14週	太陽電池の作製と	評価		作製した を解析し きる。	太陽電池、特性改	2の特性評価を行い、得られたデータ 対善に必要なパラメータが何か説明で			
		15週	エレクトロセラミ	レクトロセラミックスの作製と特性評価			単結晶化、焼結、薄膜化、微粒子化、多孔質化などに必要な材料合成法について説明できる。 セラミックス、金属材料、炭素材料、複合材料等、無機材料の用途・製法・構造等について説明できる。				
		16週	エレクトロセラミ	レクトロセラミックスの作製と特性評価			単結晶化、焼結、薄膜化、微粒子化、多孔質化などに 必要な材料合成法について説明できる。 セラミックス、金属材料、炭素材料、複合材料等、無 機材料の用途・製法・構造等について説明できる。				

		1週		エレク	フトロセラミ	ソクスの作製と特性評価				
		2週		_		ックスの作製と特性評価	分析機器を用いて、成分などの定量評価をすることが			
		3週	B PB		 _実習	能動的に問題や課題を提議・	できる。 能動的に問題や課題を提議・発案し、解決方法・プロセスを立案することができる。			
	3rdQ	4週	B PB		_ 実習	セスを立案することができる	能動的に問題や課題を提議・発案し、解決方法・プロセスを立案することができる。			
		5週		P B L実習		ることができる。	立案した課題に対し、解決策を実践し、結果をまとめ ることができる。			
後期		6週				立案した課題に対し、解決策 ることができる。	立案した課題に対し、解決策を実践し、結果をまとめ ることができる。			
		7週 8週								
		9週								
		10週								
		11週								
	4thQ	13週								
		14週								
			15週 16週							
モデルコ	アカリキ		_)学習	 内容と到達					
分類	. , , , , , ,		分野	, ,	学習内容	学習内容の到達目標	到達レベル	授業週		
					材料物性	金属の一般的な性質について説明できる。	4			
					1/3/14/2011	X線回折法を用いて結晶構造の解析に応用することができる。	4			
					金属材料	合金鋼の状態図の読み方を利用して炭化物の種類や析出挙動を説 明できる。	4			
						合金鋼の添加元素と機械的性質に関する知識を利用して、合金鋼の用途を選択できる。	4			
	分野別の専 門工学		材料系分野			アルミニウムの強度的特徴、物理的・化学的性質について説明できる。	4			
					無機材料	セラミックス、金属材料、炭素材料、複合材料等、無機材料の用 途・製法・構造等について説明できる。	4	前15,前16		
						単結晶化、焼結、薄膜化、微粒子化、多孔質化などに必要な材料 合成法について説明できる。	4			
					材料組織	降伏現象ならびに応力-歪み曲線から降伏点を求めることができる。	4			
					1/21/17/100	加工硬化、固溶硬化、析出硬化、分散硬化の原理を説明できる。 回復機構および回復に伴う諸特性の変化を説明できる。	4	前5		
						荷重と応力、変形とひずみの関係について理解できる。	4	כניה		
						応力-ひずみ曲線について説明できる。	4			
					力学	フックの法則を用いて、縦弾性係数(ヤング率)、応力およびひずみを計算できる。	4			
専門的能力						荷重の方向、性質と物体の変形様式との関係について説明できる。	4			
						引張、圧縮応力(垂直応力)とひずみ、物体の変形量を計算できる 。	4			
						実験・実習の目標と心構えを理解し実践できる。	4	前1		
						災害防止と安全確保のためにすべきことを理解し実践できる。 レポートの書き方を理解し、作成できる。	4	前2 前1		
						ノギスの各部の名称、構造、目盛りの読み方、使い方を理解し計 測できる。	4	1332		
						マイクロメータの各部の名称、構造、目盛りの読み方、使い方を 理解し計測できる。	4			
	分野別の	倹・実 │【実験	材料系分野	金属材料実験、機械的特性評価試験、化学実験、分析実験、電気 工学実験などを行い、実験の準備、実験装置および実験器具の取 り扱い、実験結果の整理と考察ができる。		4	後1,後2			
	習能力		習能力	【実験・実 習能力】	験実習】	X線回折装置などを用いて、物質の結晶構造を解析することができる。	4			
						光学顕微鏡や電子顕微鏡などで材料を観察し、組織について評価することができる。	4	前6		
						硬さ試験機や万能試験機などを用いて、材料の強度特性を評価できる。	4	前5		
						分析機器を用いて、成分などを定量的に評価をすることができる。 実験の内容をしポートにまとめることができ、口頭での説明また。	4	後2		
分野横断的		はプレゼンテーションができる。					4			
能力	汎用的技	能	汎用的	技能	汎用的技能	日本語と特定の外国語の文章を読み、その内容を把握できる。 4				

				也者とコミュニケー Eしい文章を記述で	-ションをとるため ごきる。	に日本語や特定の	外国語で	4	
			1	也者が話す日本語や	P特定の外国語の内	容を把握できる。		4	
				日本語や特定の外国 ることができる。	国語で、会話の目標	栗を理解して会話を	成立させ	4	
			F	円滑なコミュニケー	-ションのために図	表を用意できる。		4	
				円滑なコミュニケー ブち、繰り返し、オ			きる(相	4	
			1	他者の意見を聞き合意形成することができる。					
	合意形成のために会話を成立させることができる。							4	
	グループワーク、ワークショップ等の特定の合意形成の方法を実 践できる。							4	
	書籍、インターネット、アンケート等により必要な情報を適切に 収集することができる。							4	
	収集した情報の取捨選択・整理・分類などにより、活用すべき 報を選択できる。						すべき情	4	
			I	 収集した情報源や引 あることを知ってに	用元などの信頼性 る。	4			
		情報発信にあたっては、発信する内容及びその影響範囲について 自己責任が発生することを知っている。						4	
	情報発信にあたっては、個人情報および著作権への配慮が必要であることを知っている。							4	
	目的や対象者に応じて適切なツールや手法を用いて正しく情報発信(プレゼンテーション)できる。							4	
評価割合			•					•	·
	レポート	発	 表	相互評価	態度	ポートフォリオ	その他		合計
総合評価割合	80	0	-	0	20	0	0		100
基礎的能力	40	0		0	20	0	0		60
専門的能力	20			0	0	0	0		20
分野横断的能力	カ 20	0		0	0	0	0		20