### ### ### ### ### ### ### ### ### ##	代の環境から考えることが ベルの目安 i成,生体内分子,遺伝子 物質代謝について理解で 生,遺伝,老化,免疫の 解できない.								
科目番号 0023 料目区分 専門 / 選択 授業形態 授業 単位の種別と単位数 学修単位: 2 開設学科 生産システムデザイン工学専攻 対象学年 専1 調時間数 2 教科書/教材 自分を知るいのちの科学 改訂版 著者:伊藤明夫 発行所:培風館 担当教員 佐藤 徹雄 到達目標 とトはどのようにして生命活動を行っているのかを、生体分子の体内における合成や分解反応(代謝)だけでなく、現代できるようになる。また、生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 細胞の構成、生体内分子、遺伝子の働き、物質代謝について理解し、これらを関連付けて説明できる。 1 理解しているが、関連性について の働き、物質代謝について理解し、これらを関連付けて説明できる。 2 生殖と発生、遺伝、老化、免疫の働きを理解し、細胞の集合体として機能が発現しているしくみを説明できる。 第気、遺伝子組換え技術などの生命に関連する社会的問題 第5を理解し、これらの事象に対し自分の意見を述べることができる。 第5、遺伝子組換え技術などの生命に関連して社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連して社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連して社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連して社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連して社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連して社会的問題を理解することができる。 第5、遺伝子組換え技術などの生命に関連して社会的問題を理解することができる。 第5のに関連ることができる. 第5のに関連を理解することができる. 第5のに関連を理解することができる. 第5のに関連を理解することができる. 第5のに関連を理解している。 第5のに関連を理解することができる. 第5のに関連を理解することができる. 第5のに関連を理解することができる. 第5のに関連を理解することができる. 第5のに関連を理解することができる. 第5のに関連を理解することができる. 第5のに関連を理解している。 2 と称を記述されば、2 と称を記述されば、3 と称を述述されば、3 と称を述述されば、3 と称を述述されば、3 と称を述	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
授業形態 授業 単位の種別と単位数 学修単位: 2 開設学科 生産システムデザイン工学専攻 対象学年 専1 調設期 前期 週時間数 2 教科書/教材 自分を知るいのちの科学 改訂版 著者:伊藤明夫 発行所:培風館 担当教員 佐藤 徹雄 到達目標 とトはどのようにして生命活動を行っているのかを、生体分子の体内における合成や分解反応(代謝)だけでなく、現代できるようになる。また、生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 細胞の構成、生体内分子、遺伝子の働き、物質代謝について理解し、これらを関連付けて説明できる。・ セ殖と発生、遺伝、老化、免疫の働きを理解しているが、関連性についての理解は不十分である。 生殖と発生、遺伝、老化、免疫の働きを理解しているが、関連性についての理解は不十分である。 生殖と発生、遺伝、老化、免疫の働きを理解しているが、関連性について、の理解は不十分である。 生殖と発生、遺伝、老化、免疫の働きを理解していると、方の事を個々に理解している。 働きを理解している。 も続きを理解している。 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解は、ことができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連ることができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「表述と解析などの生命に関連した社会的問題を理解することができる。」 「表述と解析などの生命に関連した社会的問題を理解することができる。」 「表述と解析などの生命に関連した社会的問題を理解することができる。」 「表述と解析などの生命に関連を理解することができる。」 「表述と解析などの生命に関連を理解することができる。」 「表述と解析などの生命に関連を理解することができる。」 「表述を解析などの生命に関連を理解することができる。」 「表述を解析などの生命に関連を理解することができる。」 「表述を解析などの生命に関連を理解する」」 「表述を解析などの生命に関連を解析などの表述を解析などの生命に関連を解析などの生命に関連を解析などの生命に関連を解析などの表述を解析などの表述を解析などの生命に関連を解析などの表述を解析などの表述を解析などの表述を表述を解析などの表述を解析などの表述を述えば、表述を表述を述述を述述を述述を述述を述述を述述を述述を述述を述述を述述を述述を述	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
開設学科 生産システムデザイン工学専攻 対象学年 専1 開設期 前期 週時間数 2 教科書/教材 自分を知るいのちの科学 改訂版 著者:伊藤明夫 発行所:培風館 担当教員 佐藤 徹雄 型達目標 とトはどのようにして生命活動を行っているのかを、生体分子の体内における合成や分解反応 (代謝)だけでなく、現代できるようになる。また、生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 相胞の構成、生体内分子、遺伝子の働き、物質代謝について理解し、これらを関連付けて説明できる。 生殖と発生、遺伝、老化、免疫の働きを理解し、細胞の構成、生体内分子、遺伝子の埋まは不十分である。 生殖と発生、遺伝、老化、免疫の働きを埋解し、細胞の集合体として機能が発現しているしくみを説明できる。 病気、遺伝子組換え技術などの生命に関連した社会的問題を理解し、これらの事象に対し自分の意見を述べることができる。 病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。 病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。 病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。 方式 遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。 方式 過程 と呼ばない から はいまりない またができる からに関連した社会的問題を理解することができる。 方式 過程 と呼ばない から はいまりない から はいまりないましない から はいまりない から はいまりな	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
開設期 前期 週時間数 2 教科書/教材 自分を知るいのちの科学 改訂版 著者:伊藤明夫 発行所:培風館 担当教員 佐藤 徹雄 到達目標 ヒトはどのようにして生命活動を行っているのかを、生体分子の体内における合成や分解反応(代謝)だけでなく,現付できるようになる。また,生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 細胞の構成,生体内分子,遺伝子の働き,物質代謝について理解し,これらを関連付けて説明できる。 生殖と発生,遺伝、老化、免疫の働きを理解し、細胞の集合体として機能が発現しているしくみを説明できる。 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解することができる。 学科の到達目標項目との関係	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
担当教員 佐藤 徹雄 とトはどのようにして生命活動を行っているのかを、生体分子の体内における合成や分解反応(代謝)だけでなく、現代できるようになる。また、生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
担当教員 佐藤 徹雄 到達目標 ヒトはどのようにして生命活動を行っているのかを、生体分子の体内における合成や分解反応(代謝)だけでなく、現代できるようになる。また、生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 標準的な到達レベルの目安 細胞の構成、生体内分子、遺伝子の働き、物質代謝の個々について理解し、これらを関連付けて説明できる。 生殖と発生、遺伝、老化、免疫の働きを理解し、細胞の集合体として機能が発現しているしくみを説明できる。 生殖と発生、遺伝、老化、免疫の働きを個々に理解している。明できる。 病気、遺伝子組換え技術などの生命に関連した社会的問題を理解し、これらの事象に対し自分の意見を述べることができる。 学科の到達目標項目との関係	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
到達目標 ヒトはどのようにして生命活動を行っているのかを、生体分子の体内における合成や分解反応(代謝)だけでなく,現代できるようになる。また,生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 細胞の構成,生体内分子,遺伝子の働き,物質代謝について理解し,これらを関連付けて説明できる。 生殖と発生,遺伝、老化、免疫の働きを理解し、細胞の集合体として機能が発現しているしくみを説明できる。 「病気、遺伝子組換え技術などの生命に関連している。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解し、これらの事象に対し自分の意見を述べることができる。」 学科の到達目標項目との関係	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
 ヒトはどのようにして生命活動を行っているのかを、生体分子の体内における合成や分解反応(代謝)だけでなく、現代できるようになる。また、生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。 ルーブリック 理想的な到達レベルの目安 無胞の構成、生体内分子、遺伝子の働き、物質代謝の個々について理解し、これらを関連付けて説明できる。 生殖と発生、遺伝、老化、免疫の働きを理解し、細胞の集合体として機能が発現しているしくみを説明できる。 生殖と発生、遺伝を関連が発現しているしくみを説明できる。 生殖と発生、遺伝を関連を関連を関連を関連を関連を関連を関連した社会的問題を理解し、これらの事象に対し自分の意見を述べることができる。 学科の到達目標項目との関係 	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
できるようになる。また、生物化学の知識を自らの専門分野のより複雑な工学の問題に適用できるようになる。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 細胞の構成、生体内分子、遺伝子の働き、物質代謝について理解し、これらを関連付けて説明できる。 生殖と発生、遺伝、老化、免疫の働きを理解し、細胞の集合体として機能が発現しているしくみを説明できる。 生殖と発生、遺伝、老化、免疫の働きを個々に理解している。 明できる。 病気、遺伝子組換え技術などの生命に関連した社会的問題を理解し、これらの事象に対し自分の意見を述べることができる。 学科の到達目標項目との関係	ベルの目安 成, 生体内分子, 遺伝子 物質代謝について理解で 生, 遺伝, 老化, 免疫の 解できない.								
ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 無到達レ 細胞の構成、生体内分子、遺伝子の働き、物質代謝について理解し、これらを関連付けて説明できる。 理解しているが、関連性についての働き、ついて理解しているが、関連性についての理解は不十分である。 生殖と発生、遺伝、老化、免疫の働きを理解し、細胞の集合体として機能が発現しているしくみを説明できる。 生殖と発生、遺伝、老化、免疫の働きを個々に理解している。 生殖と発生、遺伝を発生、遺伝、老化、免疫の性能が発現しているしくみを説明できる。 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解し、これらの事象に対し自分の意見を述べることができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会的問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連した社会の問題を理解することができる。」 「病気、遺伝子組換え技術などの生命に関連ることができる。」 「病気、遺伝子組換え技術などの生命に関連ることができる。」 「病気、遺伝子組換え技術などの生命に関連ることができる。」 「病気、遺伝子組換え技術などの生命に関連ることができる。」 「病気、遺伝子組換え技術などの生命に関連ることができる。」 「病気、遺伝子組換え技術などの生命に関連ることができる。」 「病気、遺伝子組換え技術などの生命に関連ることができる。」 「病気、遺伝子組換え技術などの生命に関連などの関連を理解することができる。」 「神経・神経・神経・神経・神経・神経・神経・神経・神経・神経・神経・神経・神経・神	滅, 生体内分子, 遺伝子物質代謝について理解で生, 遺伝, 老化, 免疫の解できない.								
理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レ 細胞の構成、生体内分子、遺伝子の働き、物質代謝について理解し、これらを関連付けて説明できる。	滅, 生体内分子, 遺伝子物質代謝について理解で生, 遺伝, 老化, 免疫の解できない.								
生命の基礎 細胞の構成,生体内分子,遺伝子の働き,物質代謝について理解し,これらを関連付けて説明できる。 生殖と発生,遺伝,老化,免疫の働きを理解し、細胞の集合体として機能が発現しているしくみを説明できる。 病気,遺伝子組換え技術などの生命に関連する社会的問題 によ会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した社会的問題を理解した。 まない。 まない。 は、 遺伝子組換え技術などの生命に関連した社会的問題を理解した。 まない。 まない。 は、 遺伝子組換え技術などの生命に関連した社会的問題を理解した。 まないできる。 まないできない まないできない まないできない まないできない まないできない まないできない まない まない まない まない まない まない まない まない まない ま	滅, 生体内分子, 遺伝子物質代謝について理解で生, 遺伝, 老化, 免疫の解できない.								
生命の基礎 の働き、物質代謝について理解し、これらを関連付けて説明できる。 の働き、物質代謝の個々について理解しているが、関連性についての理解は不十分である。	物質代謝について理解で 生,遺伝,老化,免疫の 解できない.								
明できる。 病気,遺伝子組換え技術などの生命に関連した社会的問題を理解した社会的問題を理解した。 かに関連した社会的問題を理解した。 かに関連した社会的問題を理解した。 かに関連した社会的問題を理解することができる。 学科の到達目標項目との関係	解できない.								
生命に関連する社会的問題	伝子組換え技術かどの生								
	病気,遺伝子組換え技術などの生命に関連した社会的問題を理解することができない.								
教育方法等									
「生化学」の基礎知識を平易に解説し、自分の身体の中で起こっている現象の仕組みや生命に関する現象を、生作 (水、炭水化物、脂質、アミノ酸、タンパク質、酵素、ヌクレオチド、核酸など)の構造や代謝の面から理解する を目的とする. 「人は食物からどのようにしてエネルギーを得ているのか?」などを、生体分子の体内における合分解反応(代謝)から考えることができるようにする.									
講義と映像資料の視聴を組み合わせた学習を行う。生体内において生体分子が複雑に関わり合う仕組みや生命に関現象を講義とともに映像を通して学ぶことで学習効果を高める。 【事前学習】 授業の受講前にBlackboard上にあげた講義資料をダウンロードし、内容を確信しておく。 【事後学習】 授業後に複数の映像資料から、レポート課題として提出するテーマを選定し、内容をまとめてレポー題として提出する。									
注意点 講義の内容を映像資料で確認,補足することで生体内で起こる物質の変化を分子の視線から考なり,さらには"いのちのあり方"についても考えが及ぶことを期待する.	えることができるように								
授業の属性・履修上の区分									
	経験のある教員による授業								
授業計画									
週 授業内容 週ごとの到達目標									
1週 ガイダンス 授業の方針と生物化学を学ぶきる.	(目的を理解することがで								
2週 いのちの最小単位;細胞(1) 細胞の構成を説明できる.									
3週 いのちの最小単位;細胞(2) 細胞内のオルガネラの働きを	細胞内のオルガネラの働きを説明できる.								
	生体内で働いているタンパク質の構造と合成過程を説明できる. 生体内でのタンパク質の役割を説明できる.								
	生体内で働いている糖質の構造を説明できる. 生体内で働いている糖質の役割を説明できる.								
4週									
4週	と割を説明できる. 造を説明できる.								
1stQ 4週 「講義, 映像視聴」 明できる. 生体内でのタンパク質の役割 生体内でのタンパク質の役割 生体内で働いている糖質の検性体内で働いている糖質の後に 生体内で働いている糖質の後に 生体内で働いている糖質の後に 生体内で働いている糖質の形式 生体内で働いている脂質の形式 生体内で働いている脂質の形式 生体内で働いている脂質の形式 生体内で働いている脂質の形式 生体内で働いている脂質の	と割を説明できる. 造を説明できる. と割を説明できる.								
1stQ 4週 「講義, 映像視聴」 明できる。	と割を説明できる. 造を説明できる. と割を説明できる. これを説明できる.								
1stQ 4週 (講義, 映像視聴) 明できる。 生体内でのタンパク質の役割 生体内でのタンパク質の役割 生体内で働いている糖質の格性体内で働いている糖質の移動を使体内で働いている糖質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内で働いている脂質の移動を使体内を使用を使用を使用を使用を使用を使用を使用を使用を使用を使用を使用を使用を使用を	と割を説明できる.造を説明できる.と割を説明できる.はれを説明できる.この過程を説明できる.								
1stQ	を割を説明できる. きさい。 きさい。 を説明できる。 を説明できる。 を説明できる。 ない。 ない。 ない。 ない。 ない。 ない。 ない。 な								
1stQ	と割を説明できる.はきこいできる.はれを説明できる.はれを説明できる.れの過程を説明できる.できる.無細胞が受精するまでの過								
1stQ	 対割を説明できる. 対論を説明できる. されを説明できる. されを説明できる. さる. 対細胞が受精するまでの過ぬけできる. は明できる. ごきる. が明できる. ごきる. ごきる. ごきる. 								
1stQ 1stQ (講義, 映像視聴) 明できる。	は割を説明できる。 きさいできる。 はれを説明できる。 はれを説明できる。 はれを説明できる。 はの過程を説明できる。 にきる。 は知できる。 にはいてきる。 は明できる。 は明できる。 は明できる。 は明できる。								
1stQ 1stQ (講義, 映像視聴) 円できる. 生体内でのタンパク質の役害 生体内でのタンパク質の役害 生体内で働いている糖質の役 生体内で働いている糖質の名 生体内で働いている脂質の名 生体内で働いている脂質の名 生体内で働いている脂質の名 生体内で働いている脂質の名 生体内で働いている脂質の名 生体内で働いている脂質の名 生命の基本設計図;遺伝子とその働き(1) 遺伝子の構造と遺伝情報の流 遺伝子の構造と遺伝情報の流 遺伝子の構造と遺伝情報の流 遺伝子の構造と遺伝情報の流 遺伝子の構造と遺伝情報の流 地域に講義, 映像視聴 生命活動; エネルギーと物質の代謝 生体内での物質代謝を説明できる。 生殖と発生(1) に講義, 映像視聴 生殖と発生(2) 実色体について理解し、生殖 生殖と発生(2) 実施と発生(2) で調義, 映像視聴 世種と発生(2) で調義, 映像視聴 世種と発生(3) 大の遺伝と遺伝病 遺伝における形質の表れ方を 遺伝をめぐる病気や問題を診 13週 免疫のしくみ 年毎に即連した色味の理像を	は割を説明できる. きさいできる. はれを説明できる. はれを説明できる. はれを説明できる. はの過程を説明できる. にきる. は知できる. にいきる. にはいできる. にはいできる. にはいできる. にはいできる. にはいできる.								

		16週		これまでのまとめと整理		これまでの内容を振り返り理解の足りない点を補う.							
モデルコアカリキュラムの学習内容と到達目標													
分類	類				学習内容	学習内容の到達目標		到		到達レベル	授業週		
評価割合													
		試験		発	表	相互評価	態度	ポートフォリオ	レポート	合語	†		
総合評価割	合	70		70 0		0		0	0	0	30		0
基礎的能力		10		10 0		0		0	0	0	0		
専門的能力		60		0		0	0	0	30 90				
分野横断的	能力	0		0		0	0	0	0	0			