秋田.	工業高等	専門学校	開講年度	.021年度)	授業和	科目	組み込みシステ	-7				
科目基礎情報												
科目番号 0035					科目区分		専門 / 選択					
授業形態		実習		単位の種別と単位	位数履行	修単位:	1					
開設学科		創造システ	- ム工学科(電気工	対象学年	対象学年 5							
開設期		前期			週時間数 2							
教科書/教	材	自製プリン	/									
担当教員		菅原 英子										
到達目標	Ę											
1. ハードウェア記述言語を用いて, 論理回路およびテストベンチを記述することができる. 2. 論理回路開発ツールを用いて, 論理回路の設計・検証・FPGA実装ができる.												
ルーブリ	リック		T	I			1					
			理想的な到達レ/		標準的な到達レベルの目安		未到達レベルの目	l安 				
評価項目1			ハードウェア記述言語を用いて , 任意の論理回路とそのテストベ ンチを記述できる.		ハードウェア記述言語を用いて ,課題として与えられた論理回路 とそのテストベンチを記述できる		ハードウェア記述 理回路の記述がで					
評価項目2			開発ツールを用いて,任意の論理 回路の設計・検証・FPGA実装がで きる.		開発ツールを用いて,課題として 与えられた論理回路の設計・検証 ・FPGA実装ができる.		開発ツールを用いた論理回路の設計・検証・FPGA実装ができない.					
評価項目3												
学科の到	」達目標項	目との関係	<u> </u>									
教育方法	等											
概要												
授業の進め方・方法 講義形式および演習形式で行う. 適宜レポートを課す.												
注意点 合格点は60点である、レポートの内容で評価する、評価割合はレポート80%, 論理回路実装の出来20%とする、レポート未提出者は単位取得が困難になるので注意すること、												
		上の区分			1							
□ アクテ	ィブラーニ	ング	□ ICT 利用		□ 遠隔授業対応	2		□ 実務経験のあ	る教員による授業			
+≅₩≅±æ	.											
授業計画	1	週				週ごとの至	11					
前期	1stQ	1.调 找	受業ガイダンス			・本授業の内容,目的を理解できる. ・FPGA実装の流れと,本授業で使用する開発ツールの						
			PGA実装概要 IDL基礎(1) 組合せ			使い方を理解できる。 ハードウェア記述言語を用いて,代表的な組合せ回			長的な組合せ回路			
			DL基礎(1) 組合せ 			の記述ができる。 ハードウェア記述言語を用いて、代表的な組合t			長的な組合せ回路			
			IDL基礎(1) 組合せ IDL基礎(1) 組合せ		の記述ができる。 ハードウェア記述言語を用いて,代表的な組合せ回路							
			IDL基礎(2) 順序回		の記述ができる。 八一ドウェア記述言語を用いて、代表的な順序回路の							
			DL基礎(2) 順序回路記述			記述ができる.						
			IDL基礎(3) 階層記			記述ができる。 ハードウェア記述言語を用いて, 階層構造の記述か			 構造の記述がで			
			IDL基礎(3) 階層記			きる。 八一ドウェア記述言語を用いて, 階層構造の記述が			 構造の記述がで			
			サロル サイド ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			きる。						
			DL基礎(4) シミュレション記述 DL基礎(4) シミュレション記述			ンのためのテストベンチを記述できる。 ハードウェア記述言語を用いて, 論理シミュレーショ						
			FPGA実装演習			ンのためのテストベンチを記述できる.						
			FPGA実装演習			・FPGA実装ができる。 論理回路開発ツールを用いて、論理回路の設計・検証						
			FPGA実装演習			・FPGA実装ができる。 論理回路開発ツールを用いて、論理回路の設計・検証						
			FPGA実装演習			・FPGA実装ができる。 論理回路開発ツールを用いて、論理回路の設計・検証						
			PGA実装演習		・FPGA実装ができる。 論理回路開発ツールを用いて,論理回路の設計・検証							
		16週	I UA大衣供自		・FPGA実装ができる.							
モデルコアカリキュラムの学習内容と到達目標												
分類		分野		<u>ー の</u> 学習内容の到達目標	票			到達レ	ベル 授業週			
評価割合												
試験			発表	相互評価	態度	ポートフ	ォリオ	その他	合計			

総合評価割合	0	0	0	0	0	100	100
基礎的能力	0	0	0	0	0	80	80
専門的能力	0	0	0	0	0	20	20
分野横断的能力	0	0	0	0	0	0	0