鶴岡工業高等専門学校		開講年度	平成28年度	(2016年度)	ŧ	授業科目	機器分析		
科目基礎情報									
科目番号	0108			科目区分		専門 / 必何	修		
授業形態	授業			単位の種別と	単位数	履修単位:	2		
開設学科	_物質工学科			対象学年		4			
開設期	通年			週時間数		2			
教科書/教材	科書/教材 入門機器分析 (庄野利之 脇田久伸 編著)(三共出版)								
担当教員	粟野 幸雄,加賀	買田 秀樹	·	·					

到達目標

- 1. 主な機器分析測定法に関する測定原理と分析手法 が理解できる。 2. 物質の同定に必要な測定装置を選定し、得られたデータから考察することができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	日で人を埋解し美験に必要な測定装置に関して測定条件を選定し、	いくつかの間違いはあるが、本講 義で使用する測定装置の測定条件 を選定し、得られたデータから考 察することができる。	本講義で使用する分析機器の測定 条件及び得られたデータから考察 することができない。
評価項目2			
評価項目3			

学科の到達目標項目との関係

教育方法等

概要	各種機器分析法の原理と装置、実試料への応用等について講義する。また、いくつかの機器分析データの解析を行い試料中の化合物の構造決定方法や、定量および定性分析の手法についても講義する。						
授業の進め方・方法	授業は基本的に講義形式。 定期試験(前期30 %、学年末30 %)、中間テストまたは小テスト(前期15 %、後期15%)、課題レポート・受講態度 (10 %) を総合的に評価し、60 点以上を合格とする。 試験のレベルは達成目標に則した内容とする。						
注意点	前期は粟野が担当し、後期は森永が担当する。						
	参考書 「マクマリー有機化学概説」伊藤、児玉訳(東京化学同人) 「X線回折分析」加藤誠軌著(内田老鶴圃)						
	オフィスアワー 講義実施日の16:00~17:00						

事前・事後学習、オフィスアワー

授業計画

汉未可世	븩		i	i
		週	授業内容	週ごとの到達目標
		1週	1. 1機器分析序論	機器分析の発展と種類等が理解できる。
		2週	1. 2機器分析法の特徴	機器分析法の特徴と注意点が理解できる。
		3週	2. 1 吸光光度分析法	吸光光度法の原理と概要が理解できる。
	1stQ	4週	2. 2吸収スペクトル	吸収スペクトルを理解し、解析ができる。
	ISIQ	5週	3. 1原子吸光分析法概要	原子吸光分析法の原理と概要が理解できる。
		6週	3.2原子吸光分析の測定	原子吸光分析装置と測定について理解できる。
		7週	中間試験	これまでの授業内容の理解を確認する。
		8週	4. 1 発光分光分析法概要	発光分光分析法の原理と概要が理解できる。
前期		9週	4.2発光分光分析の測定	発光分光分析装置と測定について理解できる。
		10週	4. 3原子吸光分析法と発光分光分析法の比較	原子吸光分析と発光分光分析の特徴と差異が理解できる。
		11週	5. 1 X線分析	X線の発生及び性質と特徴が理解できる。
	2ndQ	12週	5. 2 X線回折分析	X線回折分析の原理と概要が理解できる。
		13週	5.3蛍光X線分析	蛍光X線分析の原理と概要が理解できる。
		14週	6. 1熱分析法概要と熱重量分析	熱分析の概要が理解できて、TG曲線の解析が出来る。
		15週	6.2示差熱分析法と示差走査熱量分析	DTA曲線とDSC曲線の解析ができる。
		16週		
		1週	7. 1クロマトグラフィー概要	クロマトグラフィーの原理が理解できる
		2週	7. 2ガスクロマトグラフィー法の概要	ガスクロマトグラフィー法の概要が理解できる。
		3週	7. 3ガスクロマトグラフィー法による測定・分析	ガスクロマトグラフィー法の装置と定性・定量分析について理解できる
	3rdO	4週	8. 1高速液体クロマトグラフィー法概要	高速液体クロマトグラフィー法の概要が理解できる。
後期	SidQ	5週	8. 2高速液体クロマトグラフィー法による測定・分析	高速液体クロマトグラフィー法の装置と定性・定量分析について理解できる。
120,43		6週	9. 1紫外及び赤外吸収スペクトル法概要	紫外及び赤外吸収スペクトル法の原理が理解できる。
		7週	9.2紫外及び赤外吸収スペクトル法測定・分析	紫外及び赤外吸収スペクトルの解釈ができる。
		8週	中間試験	
		9週	10.1核磁気共鳴分析法の概要	核磁気共鳴分析法の原理が理解できる。
	4thQ	10週	10.2核磁気共鳴分析法による測定・分析	核磁気共鳴分析法による測定とデータ解析法が理解できる。

	11调			1 0 .	10.3核磁気共鳴分析法の応用			核磁気共鳴分析法の応用法が理解できる。			
	12週			- 1- 1	うよびGC-MASS法の		質量分析およびGC-MASS法の原理が理解			できる。	
		13週 1		11.	2質量分析	うよびGC-MASS法に	質量分析およびGC-MASS法による測定と分析法が理解 できる。				
			12.	1 有機構造館	解析法の概要		機器分析から得られる情報を用いて有機化合物の構造 解析が可能であることを理解できる。				
			12.	2 有機構造解	解析法の応用例						
		16	週								
モデルコ	アカリ=	キユ	ラムの	学習	内容と到達	目標					
分類			分野		学習内容				到達レベル	授業週	
						洗剤や食品添加物等の化学物質の有効性、環境へのリスクについて説明できる。			2		
					化学(一般)	原子の構造(原子核・陽子・中性子・電子)や原子番号、質量数を 説明できる。				3	
基礎的能力	自然科	学	化学(一般	一般)		イオン式とイオンの	3				
						質量パーセント濃度の説明ができ、質量パーセント濃度の計算が できる。				4	
						モル濃度の説明がて		4			
		分野別の専 化学・ <u>4</u> 門工学 系分野			分析化学	錯体の生成について説明できる。				3	
						光吸収について理解し、代表的な分析方法について説明できる。				4	
						Lambert-Beerの法則に基づく計算をすることができる。				4	
専門的能力 分門	分野別(門工学			生物		無機および有機物に関する代表的な構造分析、定性、定量分析法 等を理解している。				4	
						クロマトグラフィーの理論と代表的な分析方法を理解している。				3	
						特定の分析装置を用いた気体、液体、固体の分析方法を理解し、 測定例をもとにデータ解析することができる。					
評価割合											
	試験		発表		相互評価	態度	ポートフォリオ	その他	合計	†	
総合評価割合 90		0		0	0	0	10	100)		
基礎的能力 20		0		0	0	0	0	20			
専門的能力 50		50		0		0	0	0	10	60	
分野横断的能力 20		20		0		0	0	0	0	20	