鶴田	岡工業高等	專門	学校	開講年度	平成29年度(2017年度)	授業科	目 信号処理	製料論		
科目基础	礎情報										
科目番号 0064						科目区分	専門	/ 選択			
受業形態		授業	¥			単位の種別と単位	立数 学修	単位: 2			
開設学科		生產	産システム	ム工学専攻	」工学専攻 対		2				
制設期 前期			 期			週時間数	2				
旦当教員		武司	 市 義弘								
到達目	堙										
ディジタ. 輪講発	ル信号処理 表とするこ	技術の : とでプレ	1 つである レゼン発	るブラインド信 表能力の向上, (号処理を通して,基 言号処理の基礎と記	基礎,技術,アルゴ 者分野での応用を理	リズムなどの 解することが	基本的な考え方 できる.	「について学習	する. また	
レーフ・	<i>ー</i> ブリック			 理想的な到達レ	 ベルの目安	標準的な到達レイ	標準的な到達レベルの目安		未到達レベルの目安		
				信号処理技術の応用を通してにア ルゴリズムを導出できる.		信号処理技術の原・説明できる.	む用に関してヨ	理解 信号処理 できる.	捏技術の基礎に	関して理解	
平価項目	2			ブルコンハムで毎回でであ、 ・				رزی.			
平価項目						+		<u> </u>			
		百口口									
	到達目標工				=						
.		が野をも	55,生産	主技術に関する	温広い対応能力を身	łにつける。 E-1					
教育方	法等										
既要		処理	里の基礎と	と諸分野での応見	用を理解することだ						
受業の進	め方・方法	輪詞 説り めの	開発表40 月,発表態 D内容等に	%, ブレセン負 態度, 質問に対す こついて評価する	(料30 %, 配布負制 する受答え等につい る.	¥30 %で評価し,終 Nて評価する.プレ・	総合評価60 点 ゼン資料と配	似上を合格とす 布資料は, 基本	する.輪講発表 構成,図表の	§は,凶表の)記述,まと	
主意 点											
事前・	事後学習、	オフ	ーファ	 'ワー				·			
<u>- 133</u> 受業計i			1717								
(未計	<u> </u>	\ _E	+177	***		1					
		週		<u>業内容</u>			週ごとの到達				
		1週		<u> </u>			信号処理技術についての概要が理解できる。				
		2週	導,	\ 2		信号処理技術についての概要が理解できる。					
		3週 基		基本概念とアプローチ1			ブラインド信号処理技術の基本的概念を学習することで、同定・等化について理解できる.				
		4週	基	基本概念とアプローチ2			ブラインド信号処理技術の基本的概念を学習することで、同定・等化について理解できる.				
	1stQ	5週 S		SISO ブラインド等化アルゴリズム1			SISO ブラインド等化アルゴリズムについて理解できる。				
		6週	SIS	50 ブラインド等化アルゴリズム2			SISO ブラインド等化アルゴリズムについて理解できる。				
		7週	SIS	SO ブラインド等化アルゴリズム3			SISO ブラインド等化アルゴリズムについて理解できる.				
		8週 S		SISO ブラインド等化による収束分析1			SISO ブラインド等化アルゴリズムのシミュレーション例				
前期							を通して、係数修正の収束分析について理解できる。				
		9週 5		SISO ブラインド等化による収束分析2			SISO ブラインド等化アルゴリズムのシミュレーショ ン例				
				JIJO ノフコンド寺IUにみる4X木刀削2			を通して,係数修正の収束分析について理解できる.				
				SISO ブラインド等化による収束分析3 2 次統計量による線形マルチ回路識別法 シングルユーザ回路識別による周波数領域法1			SISO ブラインド等化アルゴリズムのシミュレーショ				
		10週	SIS				ン例 を通して,係数修正の収束分析について理解できる.				
							統計量の概念, 2 次統計量を通して線形マルチ回路調				
	2 15	11週	2)				別法について理解できる.				
	2ndQ	12週	シ				周波数領域法による回路係数修正について理解できる				
							・				
		13週		シングルユーザ回路識別による周波数領域法2			マルチ回路の係数修正を等化について理解できる.				
		14週		適応マルチ回路等化1							
		15週		適応マルチ回路等化2			マルチ回路の	係数修正を等化	とについて理解	解できる.	
		16週									
<u>=デル:</u>	<u>コア</u> カリ=	<u>キ</u> ュラ	<u>ム</u> の学	習内容と到達	桂目標						
対類				学習内容 学習内容の到達目標					到達レベル	授業週	
		1	電気・電子	₽7							
		3	系分野 ¹	情報	基本的なアルゴリズムを理解し、図式表現できる。 		•	5	1		
	五 分野別(の声		- ソフトウェ	アルゴリズムの概念を説明できる。		5				
		ハ守 一			与えられたアルゴリズムが問題を解決していく過程を説明で		ーーー 程を説明できる	. 1			
専門的能	カードア			ハフトウェ	サ んり11にアルコ	「リヘムか」问題を辨え	大していて週		' 15		
∮門的能	力 門工学		青報系分野	野 ソフトウェア	۰	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			٥		

		<u> </u>	時間計算量や領域計算量などによってアルゴリズムを比較・評価 できることを理解している。								
評価割合											
	試験	発表	相互評価	態度	ポートフォリオ	その他	合計				
総合評価割合	0	100	0	0	0	0	100				
基礎的能力	0	30	0	0	0	0	30				
専門的能力	0	50	0	0	0	0	50				
分野横断的能力	0	20	0	0	0	0	20				