鶴岡工業高等専門学校		開講年度	令和02年度 (2	(020年度)	授業科目	応用数学 I		
科目基礎情報								
科目番号	0131			科目区分	専門 / 必	修		
授業形態	講義			単位の種別と単位数	数 履修単位	: 3		
開設学科	創造工学科(機械コース)			対象学年	4			
開設期	通年			週時間数	3	3		
教科書/教材	新編 高専の数学3(第2版・新装版),田代嘉宏/難波完爾(著),森北出版							
担当教員	石山謙							
到達日標								

複素数平面を理解し、ド・モアブル定理を使った計算ができる。3年生までに学んだ微分・積分を使い,偏微分および重積分の計算ができる。また,1階・2階微分方程式を解くことができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	複素数平面を理解し, ド・モアブ ルの定理を使うことができる。	複素数平面で複素数を表示でき , 計算できる。	複素数平面で複素数を表示するこ とができない。
評価項目2	微分方程式の型を理解し,解くこ とができる。	標準的な微分方程式を解くことが できる。	標準的な微分方程式が解けない。
評価項目3	ラグランジュの乗数法から関数の 極値を計算できる。	2変数関数の極大・極小の計算ができる。	2変数関数の偏導関数を計算できない。
評価項目4	2変数関数のグラフをイメージでき ・重積分と体積の関係がわかり計 算できる。	領域を理解して, 重積分が計算で きる。	標準的な重積分の計算ができない。

学科の到達目標項目との関係

(C) 機械工学の基礎としての数学, 自然科学の基礎学力を身につける。

教育方法等

概要	複素数平面を理解し、ド・モアブル定理を用いて複素数の計算方法を学ぶ。平面を基本とした積分を使い空間を基本と する積分を学び、微分方程式を微分・積分を用いて解く方法を学修する。
授業の進め方・方法	講義では、最初に、本題の基本的事項や理論的内容を説明する。最後に、演習課題として、それに関連する基礎問題や その応用問題に取り組んでもらう。
注意点	レポート(1): 25%, レポート(2): 25%, レポート(3): 25%, レポート(4): 25%で評価し, 総合評価60点以上を合格とする。レポート(1)は複素数, レポート(2)は微分方程式, レポート(3)は偏微分, レポート(4)は重積分などに関するレポートとする。

事前・事後学習、オフィスアワー

事後学修として,授業で扱ったプリントの基礎問題は必ず解けるようになること。オフィスアワーは,授業日の放課後(16:00~17:00)とする。何か質問がある場合は,Teamsのチャット機能を使って,石山謙(ishiyama.ken_[a]_edu.tsuruoka-nct.ac.jp)を探して,気軽にご連絡下さい。チャット内では,チャットもしくはテレビ通話が可能です。もしくは,メールでも可能です。注意:_[a]_を@に変更して下さい。

授業計画

<u> 汉未司</u>	<u> </u>			
		週	授業内容	週ごとの到達目標
		1週	複素数の演算	複素数の四則演算ができる。
		2週	複素数平面	複素数平面で複素数を表示(作図)することができる。
		3週	複素数の極表示	複素数の偏角と絶対値がわかり, 極表示ができる。
	1 =+0	4週	ド・モアブルの定理	ド・モアブルの定理が理解できる。
	1stQ	5週	ド・モアブルの定理の応用	複素数のn乗根を求めることができる。
		6週	複素数の復習	第1~5週の内容を踏まえた複素数の問題を解くことができる。
		7週	微分・積分の復習	公式から基本的な微積分の計算ができる。
前期		8週	1階微分方程式(1)(変数分離形)	変数分離形の微分方程式を解くことができる。
		9週	1階微分方程式(2)(変数分離形)	変数分離形の微分方程式を解くことができる。
		10週	1階微分方程式(3)(同次形)	同次形の微分方程式を解くことができる。
		11週	1階微分方程式(4)(線形)	1 階線形微分方程式を解くことができる。
	2 - 40	12週	2階微分方程式(1)	特別な場合に2階常微分方程式を解くことができる。
	2ndQ	13週	2階微分方程式(2)	特別な場合に2階常微分方程式を解くことができる。
		14週	定数係数線形2階微分方程式(1)	特別な場合に2階常微分方程式を解くことができる。
		15週	定数係数線形2階微分方程式(2)	特別な場合に2階常微分方程式を解くことができる。
		16週		
		1週	2変数関数	定義域を理解し不等式やグラフで表すことができる。
		2週	偏導関数	2変数関数の偏微分ができる。
		3週	合成関数の偏導関数	合成関数の偏微分ができる。
	2"40	4週	全微分と誤差	全微分から誤差計算ができる。
	3rdQ	5週	2変数関数の極大・極小(1)	2変数関数の極大と極小を計算できる。
後期		6週	2変数関数の極大・極小(2)	2変数関数の極大と極小を計算できる。
		7週	陰関数定理	陰関数定理を利用して2変数関数の導関数を計算できる
		8週	ラグランジュの乗数法(1)	条件付きの下で2変数関数の極値を計算できる。
		9週	ラグランジュの乗数法(2)	条件付きの下で2変数関数の極値を計算できる。
	4thQ	10週	2変数関数の復習	第1〜9週の内容を踏まえた2変数関数の問題を解くことができる。

				·							
	_			重積分の定義			重積分の意味がわかり、重積分を立式できる。				
				重積分の計算(1)			累次積分の計算から,立体の体積を計算できる。				
	_	.3週	重積分	うの計算(2)	積分順序の変更ができる。						
	1	14週 極座標による重積を			分の計算 (1) 極座標による重積分を計算で			かを計算で	<u>"</u> きる。		
	1	.5週	極座標	票による重積を	分の計算 (2) 極座標による重積分を計算で			きる。			
	1	.6週									
モデルコア	カリキュ	ュラムの	学習	内容と到達	目標						
分類		分野		学習内容				到達レベル	/ 授業週		
					複素数の相等を理解し、その加減乗除の計算ができる。			3	前1		
				数学	2変数関数の定義域を理解し、不等式やグラフで表すことができる。			3	後1		
					合成関数の偏微分法を利用して、偏導関数を求めることができる。			3	後3		
		数学	₹		簡単な関数について、2次までの偏導関数を求めることができる。			3	後2,後4		
基礎的能力	数学				偏導関数を用いて、基本的な2変数関数の極値を求めることがで きる。				3	後5,後6	
					2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。			3	後12,後13		
					極座標に変換することによって2重積分を求めることができる。			3	後14,後15		
					2重積分を用いて、簡単な立体の体積を求めることができる。				3	後12,後13	
					微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解 くことができる。				3	前8,前9	
					簡単な1階線形微分方程式を解くことができる。				3	前11	
					定数係数2階斉次線形微分方程式を解くことができる。				3	前12,前13	
					オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。				3	前2	
評価割合		•			•				•	•	
レポート(1) レポート(2)		ポート(2)	レポート(3)	レポート(4)	その他	その他	合	=====================================			
総合評価割合 25					25	25	0	0		00	
基礎的能力 25			25		25	25	0	0	10	00	
専門的能力 0					0	0	0	0	0		
分野横断的能力 0					0	0	0	0	0		