鶴岡工業高等専門学校			開講年度	令和05年度 (2	2023年度)	授	業科目	電気機器Ⅱ		
科目基础					•					
<u> </u>		0072		科目区分 専門 / 必何		専門 / 必				
授業形態		講義		単位の種別と単位数 学修単位: 2						
開設学科		創造工学和	科(電気・電子コー	-ス)	対象学年	4				
開設期		後期			週時間数	2				
教科書/教	材	FirstStag	eシリーズ 電気機	器概論 深尾正 監	修実教出版	·				
担当教員		田中 勝								
到達目	票									
2. 三相 3. 三相 4. 畄相	誘導電動機の 誘導電動機の 誘導電動機の	D三相交流に。 D速度特性、 D回転原理お	上び分類についても	、り、誘導起電力、 利推移、始動特性、			きる。 て理解でき	₹る。		
ルーブ	リック		理想的な到達レ	ベルの日安	煙淮的か到達し	集的な到達レベルの目安 未到達レベルの目安				
評価項目	1		かご形誘導電動機、巻線形誘導電 動機の構造について理解し、説明		かご形誘導電動機、巻線形誘導電 動機の構造について理解できる。		形誘導電	かご形誘導電動機、巻線形誘導電 動機の構造について理解できない		
評価項目	2		できる。 三相誘導電動機の三相交流による 回転磁界、すべり、誘導起電力、 等価回路について理解し、説明で きる。		三相誘導電動機の三相交流による 回転磁界、すべり、誘導起電力、 等価回路について理解できる。		 流による 記電力、	。 三相誘導電動機の三相交流による 回転磁界、すべり、誘導起電力、 等価回路について理解できない。		
評価項目	3		三相誘導電動機の速度特性、トルク、出力、比例推移、始動特性、 労働法、速度制御について理解し、その特性が計算できる。		准移、始	度特性、トル 三相誘導電動機の速度特性、 、始動特性、 ク、出力、比例推移、始動特				
評価項目	4					単相誘導電動機の回転原理および 分類について理解できる。		単相誘導電動機の回転原理および 分類について理解できない。		
評価項目	5		│、構造、特性、励磁方法、並行運 │、構造、		同期発電機の誘導 、構造、特性、原 転について理解	秀導起電力、巻線法 励磁方法、並行運 gできる。		同期発電機の誘導起電力、巻線法 、構造、特性、励磁方法、並行選 転について理解できない。		
評価項目	6		同期電動機の原理、V曲線、入出力 特性について理解し、説明できる 特性について理解			里、V曲線、入出力 同期電動機の原理、V曲線 存性について理解できない				
		目との関	•					•		
(<u>E) もの</u> 教育方》		る温でで図り	芯能力を身につける) o						
	五寺	雨私燃 /	カわかでロナタノロ	コンクもテンス系道	南斜州 交南元本	亡ノ唐日	ロナわてい	フロ知交両機 しい核の同志 古舟が仏		
概要		・電勤機の	ルなかで取も多く用 出力を要する負荷に	かられている誘導 使用されている同	竜動機、発竜所で 期電動機について	ムく使用 原理、構	月されてい 黄造、特性	る同期発電機と比較的回転速度が低 を学ぶ。		
授業の進	め方・方法	・講義形 ・後期中 60点以上 デマンド	態は対面授業で実施 間試験 30%、学年 を合格とする。試 数材および課題と同	重するが、補助教材 末試験 40%、課題 食においては達成目 1程度とする。	としてオンデマン (確認テスト等) 標に則した内容の	ド教材も 20%、	5利用する 受講状況			
注意点		ー・なお、	は、電気主任技術者認定の必修科目である。 「不可」となったものは1回のみ再試験を実施する。ただし、課題として実施する確認テスト全実施回数の が未受験である者については、再試験は実施しない。							
 事前・	事後学習、	オフィス	アワー							
本科目【オフィ	は学修単位科スアワー】ギ		事前・事後学習とし 11:50~12:50、10	ティスタンで では、00~17:00とする ファイン・ファイン・ファイン・ファイン・ファイン・ファイン・ファイン・ファイン・	材による自学自習 るが、他の日でも7	および記在室時は	果題(確認 は随時対応	アスト)を実施する。 する。また、Teamsのチャット機能		
授業の	属性・履修	を 上の区分								
□ アク ラ	ティブラーニ	ング	☑ ICT 利用		□ 遠隔授業対応	<u></u>		□ 実務経験のある教員による授		
授業計	画					_				
		週	授業内容			週ごと	の到達目標			
後期		1.個	授業ガイダンス 三相誘導電動機の原理と構造			本講義の進め方および講義内容について理ができる。 三相誘導電動機の三相交流による回転原理 、構造について理解できる。		D三相交流による回転原理、回転磁界		
		2週				三相誘導電動機のすべり、誘導起電力、等価回路について理解できる。				
		3週	三相誘導電動機の特	相誘導電動機の特性1(速度特性・出力)			三相誘導電動機の速度特性、トルク、出力について理解できる。			
	3rdQ	4週	- 三相誘導電動機の特	目誘導電動機の特性 2 (比例推移)			三相誘導電動機の比例推移について理解できる。			
		1,2	日間の特色動機の運転と速度制御			三相誘導電動機の始動特性と始動法、速度制御について理解できる。				
			特殊かご形誘導電動 と分類	導電動機の原理	特殊かご形誘導電動機の構造と原理、単相誘導電動機の回転原理、分類について理解できる。					
		7週	誘導電圧調整器の構		三相および単相誘導電圧調整器の構造、原理について理解できる。					
	1	Q)E	前期中間試験				TELIT CC 00			

8週

前期中間試験

	4thQ	9週	三相[相同期発電機の原理と構造			三相同期発電機の原理、構造について理解できる。				
		10週	三相「	相同期発電機の電機子反作用と等価回路			三相同期発電機の電機子反作用、等価回路について理 解できる。				
		11週	三相[三相同期発電機の特性、同期インピーダンス、短絡比 について理解できる。				
		12週					三相同期発電機の励磁方式、並行運転について理解できる。				
		13週	三相「	相同期電動機の原理			三相同期電動機の原理、電機子反作用について理解できる。				
		14週	三相[三相同期電動機の特性と始動 三相同期電動機の特性、始					動法について理解できる。		
		15週	前期	未試験							
		16週									
モデルコアカリキュラムの学習内容と到達目標											
分類			野	学習内容	学習	内容の到達目標		到達レベル	授業週		
			_	電磁気	電磁	電磁誘導を説明でき、誘導起電力を計算できる。					
専門的能力	分野別の 門丁学	専 電	気・電子 分野		誘導機の原理と構造を説明できる。			4			
	1 1 1 2 7)) ±1	電力	同期	機の原理と構造を説明できる。	4				
評価割合											
試験						課題	受講状況	合計			
総合評価割合 70						20	10	100			
基礎的能力		40			10	10	60				
専門的能力		30			10	0	40				