在皇帝		 等専門学校	開講年度 平成31年度 (授業科目	数学V	
科目基础		<u>יו, ריו ובא ר</u>		2015年/文)	I IX X 11LI	<u>₩1- v</u>	
科目番号		0088		科目区分	一般 / 必	. lr交	
		授業		単位の種別と単位			
			学科(桂起コース)	対象学年	<u> </u>	.: 3	
開設学科 創造工学科(情報コー 開設期 通年			子科(旧報コー人)	1	3		
	h++						
教科書/教			,	対元 願 (者) ,	上出版		
担当教員		上松 和	弘,木村 太郎				
到達目							
2年生で扱 面積・体 ルーブ!	積,曲線の	た関数の微分 長さを計算	かまか高階微分を学ぶことで, 色々な曲 することができる。基本的な確率を求め	線に対して極値や凹 られる。基本的統計	凸を調べること †用語を説明でき	ができる。積分法を利用して,図形の きる。基本的統計量を求められる。	
<i>ル</i> ーン:	<u> </u>		型想的な到達レベルの目安 理想的な到達レベルの目安	標準的な到達レベ			
			微分を用いて関数の極値や凹凸を	公式を使いこなし			
評価項目	1		調べグラフを書くことができる。 分を計算するこ			分を計算することができない。	
評価項目:	2		積分を用いて図形の面積・体積 , 曲線の長さを求めることができ る。	公式を使いこなし色々な関数の 定積分・定積分を計算するこのできる。		公式を使いこなし色々な関数の不 定積分・定積分を計算することが できない。	
評価項目	3		2項分布や正規分布を具体的事例に 適用して確率を求めることができ る。	例に「森文公女」は加二・コカニデータリ			
 学科の3	到達目標	 項目とのI					
教育方法		21					
2年生で学んだ微分法・積分法を使って、更に深い知識を習得する。今まで扱わなかった形の関数を微分・積概要 を学ぶ。高階微分を用いて曲線の凹凸を調べたり、関数を多項式で近似したりする。積分法を利用して、面積、更には曲線の長さを計算したりする。確率・統計について学ぶ。							
授業の進	め方・方法	身に付	頃や理論的内容を講義で解説し、その後 けてもらう。演習の際にはまず例題を解	説し,それを参考に	類題やより高度	とな問題に取り組んでもらう。 しゅうしゅん	
注意点			間試験14%,前期末試験14%,後期中 ト・小テスト等)10%,レポート10%、 いては達成目標に即した内容を出題する	間試験14%,字年末 授業への取り組み: 。試験問題のレベル	試14%, CBI 1 10%で評価し, いは授業で取り扱	14%,その他授業中に行つテスト(課 総合評価50点以上を合格とする。各試 なった問題と同程度とする。	
事前・	事後学習	、オフィ	スアワー				
授業計画	画						
		週	授業内容	ù	固ごとの到達目標	西	
		1週	微分の復習	*	数学IIIで学習した微分の計算ができる。		
		2週	関数の凹凸(1)	0	第2次導関数を計算でき,第2次導関数とグラフの凹凸の関係を理解できる。		
		3週	関数の凹凸(2)	ā	第2次導関数を用いて凹凸を調べグラフを描くことがで きる。		
		4週	逆関数の導関数		逆関数の導関数を求めることができる。		
	1stQ	5週	逆三角関数		逆三角関数の値や逆三角関数の導関数を求めることが できる。		
		6週	媒介変数方程式とその導関数(1)		媒介変数方程式の意味を理解し、媒介変数表示された 曲線の概形を描くことができる。		
前期		7週	媒介変数方程式とその導関数(2)	, y	媒介変数方程式の導関数を求め、接線や法線の方程式 を求めることができる。		
133/43		8週	中間試験				
		9週	ロピタルの定理			を用いて不定形の極限を計算できる。	
		10週	高次導関数			めることができる。	
		11週	マクローリン展開(1)	- 7	3.	マクローリン展開の意味を理解でき	
	2ndQ	12週	マクローリン展開(2)		ン展開を求める。		
		13週	不定積分の復習		数学IIIで学習した不定積分の計算ができる。		
		14週	分数関数の積分	芒	部分分数展開を用いて分数関数の積分を計算できる。		
		15週	無理関数の積分		無理関数の積分を計算できる。		
		16週					
後期		1週	定積分	利	和の極限としての定積分の定義を理解できる。定積分 と不定積分の関係を説明できる。		
		2週	面積		定積分と図形の面積の関係を理解し, 定積分を用いて 図形の面積を計算できる。		
		3週	体積		定積分と図形の体積の関係を理解し,定積分を用いて 図形の体積を計算できる。		
	3rdQ	4週	曲線の長さ		定積分と曲線の長さの関係を理解し, 定積分を用いて 曲線の長さを計算できる。		
		5週	広義積分(1)		広義積分の意味を理解できる。		
		6週	広義積分(2)		広義積分の計算ができる。		
		7週	中間試験	,-			
		8週	場合の数	III	順列・組合せの2		
		O旭	がロリダ	<u> </u>	はない 祖一での2	ムと人で大いてなたの。	

		9週	確率			確率の定義・基本法則に従っ きる。	て確率を求め	ることがで		
	4thQ	10週	条件付き確率		全る。 条件付き確率を求めることができる。 独立事象について理解できる。					
		11週	確率分布			簡単な例で確率分布表・ヒストグラムを作ることがで				
		12週	2項分布			き、平均・分散・標準偏差が計算できる。 2項分布の確率分布表を作ることができ、平均・分散が				
		13週	計算できる		連続的な確率分布が理解でき	ー りな確率分布が理解できる。				
		14週	データの整理(1次元データ)			正規分布に従うときの確率を計算できる。 1次元のデータについて,平均・分散・標準偏差を求め				
		15週	データの整理(2次		ターニ カン 2次元のデータについて、相関		関係数・回帰	直線を求める		
		16週		ことができる。						
モデルコ										
分類		分野		学習内容	学習内容の到達目標		到達レベル	授業週		
					簡単な場合について、関数の逆関数とができる。	を求め、そのグラフをかくこ	3			
					放物線、楕円、双曲線の図形的な性質の違いを区別できる。		3			
					簡単な場合について、不等式の表す領域を求めたり領域を不等式 で表すことができる。		3			
					簡単な場合について、関数の極限を求めることができる。		3			
					微分係数の意味や、導関数の定義を理解し、導関数を求めること		3			
					ができる。 積・商の導関数の公式を用いて、導関数を求めることがができる					
					傾・同の特別が公式を用いて、特別数で求めることがかできる。 。		3			
					合成関数の導関数を求めることができる。		3			
			数学	数学	三角関数・指数関数・対数関数の導関数を求めることができる。		3			
					逆三角関数を理解し、逆三角関数の導関数を求めることができる。		3			
					関数の増減表を書いて、極値を求め、グラフの概形をかくことが できる。		3			
					極値を利用して、関数の最大値・最小値を求めることができる。 簡単な場合について、関数の接線の方程式を求めることができる		3			
							3			
							3			
					関数の媒介変数表示を理解し、媒介変数を利用して、その導関数		3			
					を求めることができる。 不定積分の定義を理解し、簡単な不定積分を求めることができる		3			
					。		3			
					とができる。 定積分の定義と微積分の基本定理を理解し、簡単な定積分を求め		3			
基礎的能力	数学	数学			ることができる。 分数関数・無理関数・三角関数・指数関数・対数関数の不定積分					
					・定積分を求めることができる。 簡単な場合について、曲線で囲まれた図形の面積を定積分で求め		3	後3		
					ることができる。		3			
					簡単な場合について、曲線の長さを定積分で求めることができる 。		3			
					簡単な場合について、立体の体積を定積分で求めることができる。		3			
					2変数関数の定義域を理解し、不等式やグラフで表すことができる。		3			
					合成関数の偏微分法を利用して、偏導関数を求めることができる 。		3			
					簡単な関数について、2次までの偏導関数を求めることができる。		3			
					偏導関数を用いて、基本的な2変数関数の極値を求めることができる。		3			
					独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。		3			
					条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単な場合について確率を求めることができる。		3			
					1次元のデータを整理して、平均・分散・標準偏差を求めることができる。		3			
					2次元のデータを整理して散布図を作成し、相関係数・回帰直線 を求めることができる。		3			
					簡単な1変数関数の局所的な1次近似式を求めることができる。		3			
					1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。		3			
					オイラーの公式を用いて、複素数変数の指数関数の簡単な計算が		3			
	1			<u> </u>	できる。		L			

評価割合						
	試験	レポート	その他	合計		
総合評価割合	80	10	10	100		
基礎的能力	80	10	10	100		
専門的能力	0	0	0	0		
分野横断的能力	0	0	0	0		