鶴岡工業高等専門学校		開講年度	平成30年度 (2018年度)		授業科目	工学実験・実習Ⅱ	(電気)	
科目基礎情報								
科目番号	0094			科目区分	専門 / 必	専門 / 必修		
授業形態	実験			単位の種別と単位数	尘単位数 履修単位: 2			
開設学科	創造工学科(情報コース)			対象学年	3	3		
開設期	通年			週時間数	2	2		
教科書/教材	別途用意する実験指導書を用いる							
担当教員	武市 義弘,森谷 克彦,佐藤 秀昭							
到達曰煙								

- 実験テーマの目的,原理,測定方法を理解し,測定器を選択してグループで測定を実施できる.
 各種素子,電気回路,論理回路などの測定方法を習得するとともに,簡単な論理回路を構成できる.
 実験結果および結果に対する考察を報告書にまとめ,決められた期日までに提出することができる.

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	目的,原理,測定方法を理解し ,グループのリーダーとして実験 を遂行できる.	目的,原理,測定方法を理解し ,グループの一員として実験を遂 行できる.	目的,原理,測定方法を理解できず,グループの一員として実験に参加できない.
評価項目2	テキストの内容と実験結果を理解 し、テキストにない測定方法も自 ら考え実施できる.	テキストに沿って,各種素子,電気回路,論理回路の測定を実施できる.	テキストに書かれた測定方法が理 解できず,実験を遂行できない.
評価項目3	実験結果に対して参考文献を用い 自分の言葉で的確な考察ができ ,正しい日本語を用いて報告書を まとめ,期日までに提出できる.	実験結果を表や図に表して,考察 とともに報告書を作成し,期日ま でに提出することができる.	実験結果を報告書にまとめること ができず,期日までに報告書を提 出できない.

学科の到達目標項目との関係

教育方法等

3/11 37 3724 13	
概要	座学の理解しにくい点を実験により理解してもらう。主に3 年生で学ぶ交流理論、電気機器および電子工学の範囲を実験 テーマとしている。
授業の進め方・方法	報告書80 %、取り組み姿勢20 %として総合判断し、総合評価50 点以上を合格とする。報告書は基本構成、論旨の明瞭さ、図表の正確性、考察内容を評価する。また、取り組み姿勢は実験の取り組み姿勢、レポートの提出状況、実技試験を評価する。ただし、全テーマの報告書提出を評価条件とする。
注意点	電気主任技術者認定の必修科目である。 ・授業中の居眠りや許可なく携帯電話・スマートフォン・タブレット端末を使用した場合、最終評価点から減点する。 ・報告書の提出期限は必ず守ること、また未完成の報告書は提出しないこと。特別な理由以外は提出期限遅れの報告書 、未完成の報告書は受け取りません。 ・実技試験において携帯電話・スマートフォン・タブレット端末の使用は不正とみなす。

事前・事後学習、オフィスアワー

授業計画

[技表]	쁴			
		週	授業内容	週ごとの到達目標
		1週	ガイダンス	実験実習の進め方がわかる。
		2週	実験概要説明(前期)	各実験テーマ(前期)の概要を理解できる。
		3週	太陽電池の特性試験(1週目)	太陽電池を用いて電圧電流特性を測定し、その特性を 評価できる。また、太陽電池における影の影響を理解 できる。
	1stQ	4週	太陽電池の特性試験 (2週目)	太陽電池を用いて電圧電流特性を測定し、その特性を 評価できる。また、入射照度の影響を理解できる。
		5週	単相変圧器の特性試験(1週目)	変圧器の絶縁試験、極性試験、無負荷試験、短絡試験 を実施し、その内容を理解できる。
		6週	単相変圧器の特性試験(2週目)	変圧器の負荷試験を実施し、その内容を理解できる。
		7週	直流機の特性試験(1週目)	直流電動機の始動、逆起電力、速度制御を理解できる 。
前期		8週	直流機の特性試験(2週目)	直流発電機の無負荷特性、外部特性を理解できる。
		9週	ブレーカ及び過電流継電器の動作特性(1週目)	安全ブレーカと漏電ブレーカの動作特性を理解できる。
		10週	ブレーカ及び過電流継電器の動作特性(2週目)	過電流継電器の特性を理解できる。
		11週	交流回路のベクトル軌跡と位相差(1週目)	RL、RC回路のベクトル軌跡を実験を通して理解できる。
	2ndQ	12週	交流回路のベクトル軌跡と位相差(2週目)	RL、RC回路の電圧と電流の遅れおよび進みを実験を通して理解できる。
		13週	前期実験実習の復習	前期実験テーマの復習をし、実験内容を理解できる。
		14週	実技試験対策	実技試験対策として各テーマの実験回路を復習し、回 路を構成できる。
		15週	実技試験	与えられた実験テーマの回路を組むことができる。
		16週		
後期		1週	ガイダンス	実験の進め方がわかる。
		2週	実験概要説明(後期)	各実験テーマ(後期)の概要を理解できる。
	3rdQ	3週	トランジスタの静特性(1週目)	バイポーラトランジスタおよびユニポーラトランジス タの静特性を理解できる。
		4週	トランジスタの静特性(2週目)	バイポーラトランジスタおよびユニポーラトランジス タの静特性を理解できる。
		5週	RC回路の周波数特性(1週目)	RとCを組み合わせた回路の周波数特性を理解できる。

6週				RC回路の周波数特性 (2週目)				RとCを組み合わせた回路の周波数特性を理解できる。			
		7週		波形変換回路の実験(1週目)			パルス特性および非線形変換回路の特性を測定し、波 形変換の概念を理解できる。				
8週				波形変換回路の実験 (2週目)				パルス特性および! 形変換の概念を理解	ド線形変換 解できる。	回路の特性を	を測定し、波
		9週					論理回路の各定理を理解し、実回路を組んで理解でき る。				
		10週		論理回	回路の基本(2	週目) 論理回路の各定理を理解し、 る。		実回路を組んで理解でき			
		113	11週 共					LC直列共振回路、LC並列共振回路の共振回路を測定を 通して理解できる。			
4	4thQ		12週 共振					LC直列共振回路、LC並列共振回路の共振回路を測定を 通して理解できる。			
		13	13週 後期		後期実験実習の復習 後期実験テーマの復習をし、				复習をし、	実験内容を理	里解できる。
		14週 実技		実技訓	実技試験対策			実技試験対策として 路を構成できる。	技試験対策として各テーマの実験回路を復習し、回		
				実技試験		与えられた実験テーマの回		-マの回路	8を組むこと	ができる。	
		16	周								
モデルコス	アカリコ	<u>キユ</u> :	ラムの	学習	内容と到達	目標					
分類			分野		学習内容	学習内容の到達目標			到達レベル	授業週	
	分野別の	の亩	厚 電気・電子 系分野		電力	直流機の原理と構造を説明できる。			4		
	門工学	か す				変圧器の原理、構造、特性を説明でき、その等価回路を説明できる。			:説明でき	4	
						電圧・電流・電力などの電気諸量の測定が実践できる。				3	前3,前5,前 7,前9,前 11,後3,後 5,後7,後 9,後11
						抵抗・インピーダンスの測定が実践できる。				3	
専門的能力		の工 電気・電 系分野【 ・実 験・実習				オシロスコープを用いて実際の波形観測が実施できる。				3	前11,後 5,後7
	分野別(学実験			電子	電気・電子 系【実験実	電気・電子系の実験を安全に行うための基本知識を習得する。			する。	3	前1,前2,後 1,後2
	習能力		蹶・天 力】	白牝	習】	インピーダンスの周波数特性を考慮し、実験結果を考察できる。			できる。	4	
						共振について、実験結果を考察できる。				4	
						増幅回路等(トランジスタ、オペアンプ)の動作に関する実験結果 を考察できる。				4	
						論理回路の動作について実験結果を考察できる。				4	後9
						トランジスタの電気的特性の測定法を習得し、その実験結果を考察できる。			結果を考	4	
						ディジタルICの使用方法を習得する。			4		
評価割合											
	実技試験 発表			表	相互評価	態度	ポートフォリオ	報告書評	価 合語	†	
総合評価割合 10		0		0	10	0	80	10	0		
基礎的能力	10)		0		0	10	0	30	50	
専門的能力 0		0		0	0	0	30	30			
分野横断的能力 0		0		0	0	0	20	20			