福島	島工業高等	専門]学校	開講年度	平成29年度 (2	2017年度)	授業科目	機械工作	 法Ⅱ		
科目基礎				,	,						
科目番号		00)73			科目区分	専門 / 必	 修			
<u></u>			義・演習			単位の種別と単位					
開設学科						対象学年	3				
加致了 1.1 開設期		- 1"~	////////////////////////////////////	THE TIME THE	<u> </u>	週時間数	2				
	[科書/教材 改訂 機械工作法 II 、米津栄、朝倉書店 配付]										
23 23 23 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36			<u>あ 塚城工</u> 本 匡以			(契付					
		¹IA	* EX								
到達目		rm 471 i	2)/= LT		++=1 ** + + -> + -	7					
②切削条 ③比切削 ④切削加	件と工具寿 抵抗と切削 工と研削加	命の関 動力に 工、及	係を理解し ついて理解 びその加	し、テイラーの! 解し、旋削加工!	亢を計算で求められる 式を用いて工具寿命 時の消費動力を計算 工作機械の基礎知識 る。	時間が計算できる。 できる。	『品等の設計に応	が用できる。			
ルーブ	リック										
				理想的な到達レ	ベルの目安	標準的な到達レベ	ルの目安	未到達レ	ベルの目安		
平価項目	11					各授業項目の内容	各授業項目の内容を理解している		各授業項目の内容を理解してい		
十個块口	11			できる。		0		い。			
学科の	到達目標」	頁目と	上の関係								
学習・教	育到達度目	標 (B)	学習・教	育到達度目標 (E)						
数育方》 数育方》	 法等										
		桦	械加工の名	分野のうち、不			加丁(旋削・穴	こカロナ・フラ	イス加丁)と	研削加工に	
既要			いて学習っ	する。あわせて、	レーザや放電等を	応用じた除去加工の	概要についても	学ぶ。	. / WHIL/ C	ILIJUH IL 10	
 受業の進	め方・方法	中	間試験は、	授業時間中に!	50分間の試験を実施	する。期末試験は	0分間の試験を	<u></u> 実施する。			
					題を20%、学習態度				格とする。		
主意点			れまで学習	当してきた、数年	学・物理・工作実習	寺と関連づけて考え	ることが重要で	ざある。			
受業計	画	_									
		週	授			j	固ごとの到達目標	票			
		1週	機材	械加工の意義、	切削加工の目的と方	法	生産道、哲学、機械加工の分類、切削加工の特徴				
		2週	切り	切りくず生成と構成刃先			切削模型、切りくずの形態、構成刃先生成の条件				
前期		3週		切削理論			2次元切削、切削抵抗、せん断角の求め方				
		4週		切削熱、切削工具材料(1)			切削熱源と測定方法、工具材料に必要な性質				
	1stQ	5週		` '			各種工具材料の特性、バイトの形状と表記方法				
]削工具材料(2)、切削工具形状			工具損傷の形態、工具寿命曲線(テイラーの式)				
		6週		具摩耗と寿命			工具損傷の形態、工具寿叩曲線(デイブーの式)				
		7週		1週から7週までのまとめ、前期中間試験							
		8週		削加工の経済性				切削速度・送りと切込み・工作物と経済性との関連			
		9週		がり			びびりの発生原因、びびりの種類、びびりの対策				
		10边		削加工と旋盤			旋盤の機構、旋盤の大きさ、旋盤の種類				
		11返		削の方法と工作			旋削加工の種類、センタ仕事、チャック仕事				
	2ndQ	12返			加工の留意点、旋削時の所要動力		バイトの種類、切削条件、比切削抵抗、消費動力				
	ZiiuQ	13退	司 穴	1工の概要、中ぐり加工、工具と中ぐり盤		ぐり盤	穴加工の分類、中ぐりの方法、横中ぐり盤				
		14步	电 中	り盤とマシニングセンタ、FMS			マシニングセンタ、ATC、自動搬送、FMS				
		15返	し ボー	ール盤を用いた			やあけ・リーマ が	 加工・沈めか	 であけ、穴加エ	 の特徴	
		16退				ľ					
		1週		 じれ刃ドリル		1	ねじれ刃ドリル各部の名称と特徴				
				リル加工の生産性と精度、リーマとボール盤加工			生産性・精度向上対策、リーマ加工とリーマの種類				
		3週		殊なドリルとそれらを用いた穴加工、ボール盤			油穴付ドリル・深穴ドリル、ボール盤の種類と構造				
		4週		ティス加工の概要、切削作用(1)			カライス加工の特徴、周刃フライスの切削作用				
	3rdQ						正面フライスの切削作用、生産性・精度向上対策				
後期				『削作用(2)、フライス加工の生産性と精度 『システィストであつライス			正面ノライスの切削作用、生産性・精度向上対策				
				刃フライスと正面フライス			ョカノフ1人・」	エ囲ノフイノ	い性規と情だ	1	
				5週から21週までのまとめ、後期中間試験 2.ドニリを思いた会型加工			>=====	V # 120/201 -	□ 4205 1=···	目 ~ ナ ~!	
	-			ンドミルを用いた金型加工			金型、3次元形状の切削、工具経路、切削量の変動				
	4thQ			ライス盤、NC加工			フライス盤の種類と構造、NCの概要とサーボ機構				
				削加工概要、研削砥石(1) 			研削加工のメカニズム、研削砥石の要素				
				刊低石(2)			研削砥石の要素、砥石の表記方法				
		12返		円筒研削、内面研削、心なし研削			各研削法と研削盤、トラバース・プランジカット				
		13返	型 平面	平面研削、研削作業			平面研削の方法、研削条件、砥石の目立てと整形				
		14週 電		電子ビーム加工、レーザ加工、放電加工等			それぞれの加工法の概要と特徴				
		15週 楔		機械工作法の展望			コンピュータ利用、高精度化、地球環境への配慮				
		16週									
<u>ーーーー</u> ドデリ:	<u>ー</u> コアカリ・		_	習内容と到達							
<u> </u>	<u> </u>			1					到達1.ベリ	运 ₩10	
乙米乙			分野	学習内容	学習内容の到達目	示			到達レベル	授業週	
分類		- 1			*終+++++**** /		. –		4		
<u>}類</u>	分野別(門工学	о т	機械系分里	野 材料		れる性質を説明でき 材料、複合材料、機		5 1 PP 1 A 1 P 1	4		

分野横断的能		0		0	0	0	0	0	
専門的能力	0	0		0	0	0	0	0	
基礎的能力	70	2	0	0	10	0	0	100)
総合評価割合	70	2	0	0	10	0	0	100)
	試験	誤	題	相互評価	態度	ポートフォリオ	その他	合語	†
評価割合									
				る。	こにみこめること		ישישים כ	4	
				験装直の操作、美歌 実験の内容をレポー			説明でき		
				加工学実験、機械力 実験、流体力学実態 験装置の操作、実験	会は田の敕理と を	こう などを行い、実験の ヌができる	〕 準備、実	4	
				できる。 加丁学実験、機械ナ			 3、熱力学		
				業の基本的な流れと	と操作を理解し、こ	プログラミングと基	本作業が	4	
				る。 少なくとも一つのNC工作機械について、各部の名称と機能、作				-	
				少なくとも一つのNC工作機械について、プログラミングができ				4	
				NC工作機械の特徴と種類、制御の原理、NCの方式、プログラミングの流れを説明できる。				4	
				ボール盤の基本操作を習得し、穴あけなどの作業ができる。				4	
				ができる。				4	
				フライス盛主要部の構造と機能を説明できる。 フライス盤の基本操作を習得し、平面削りや側面削りなどの作業					
				切り、テーパ削り、穴あけ、中ぐりなどの作業ができる。 フライス盤主要部の構造と機能を説明できる。				4	
				旋盤の基本操作を習得し、外丸削り、端面削り、段付削り、ねじ				4	
	習能力	習能力】	験実習】	旋盤主要部の構造と	-	5。		4	
	分野別の工 学実験・実 習能力	機械系分野 【実験・実		アーク溶接の基本作業ができる。				4	
				アーク溶接の原理を	で理解し、アークス 5を理解し、宝母7	容接機、アーク溶接 ▽きる。	器具、ア	4	
				ガス切断の基本作業ができる。				4	
				ガス溶接の基本作業ができる。				4	
				ガス溶接で用いるガス、装置、ガス溶接棒の扱いかたがわかる。				4	
				ねじ立て工具を用いてねじを切ることができる。				4	
				やすりを用いて平面仕上げができる。				4	
				けがき工具を用いてけがき線をかくことができる。				4	
				ダイヤルゲージ、ハイトゲージ、デプスゲージなどの使い方を理解し、計測できる。				4	
				マイグロメータの各部の名称、				4	
				計測できる。 マイクロメータの各部の名称、構造、目盛りの読み方、使い方を					
				ノギスの各部の名称、構造、目盛りの読み方、使い方を理解し、				4	
				レポートの作成の仕方を理解し、実践できる。				4	
				災害防止と安全確保のためにすべきことを理解し、実践できる。				4	
				実験・実習の目標と心構えを理解し、実践できる。				4	
				焼戻しの目的と操作				4	
				焼入れの目的と操作を説明できる。				4	
				焼きなましの目的と操作を説明できる。 焼きならしの目的と操作を説明できる。				4	
								4	
				灰糸岬の住員を埋所 Fe-C系平衡状態図(4	
				鉄鋼の製法を説明で 炭素鋼の性質を理解		- が ** * * * * * * * * * * * * * * * * *		4	
						であるか説明できる	0 0	4	
				塑性変形の起り方を説明できる。 加工硬化と再結晶がどのような現象であるか説明できる。				4	
				合金の状態図の見た				4	
				金属と合金の状態変	変化および凝固過程	星を説明できる。		4	
				金属と合金の結晶構	造を説明できる。			4	
				機械的性質と温度の)関係およびクリ-	-プ現象を説明でき	る。	4	
				疲労の意味を理解し、疲労試験とS-N曲線を説明できる。				4	
				脆性および靱性の意味を理解し、衝撃試験による粘り強さの試験 方法を説明できる。				4	
				硬さの表し方およて				4	
				引張試験の方法を理			<u>る。</u>	4	
		1							