<u>福島</u>	引工業高等	専門学校	開講年	F度 平成30年度(2018年度)	授業科目	電気電子工学実験				
科目基础	楚情報										
科目番号		0059			科目区分	専門 / 必修	専門 / 必修				
受業形態		実験・詞	€習		単位の種別と単	位数 履修単位:	3				
開設学科		電気工	幹科(R2年度開	講分まで)	対象学年	3	3				
開設期		通年			週時間数	3					
教科書/教	材	電気電	子工学実験指導	書,福島工業高等専門学	学校電気工学科編						
旦当教員		伊藤 淳	濱﨑 真一,山田	計貴浩,橋本 慎也							
到達目標	=	•									
		トめの基礎は	お術と雷子同路		つける事を日煙と	 -すス					
レーブリ		20000至成	大阪で売り口品・	に因うる空咙民間とので	こうがも子で口がて	- 7 & 0					
ν- <i>)</i> :	ノック		TE +E 40 + \ 70		一種が生かれています						
				達レベルの目安	標準的な到達し	グルの日安 を実践で理解して	未到達レベルの目安	とった T田A刀!:			
平価項目:	1		応用できる	D内容を実践で理解し、 る。	到達日標の内容	を 天成 (生胖し (到達目標の内容を実置 いない。	えて達胜し			
評価項目2	2										
平価項目3											
	 到達目標項	百日との問	三· 引经								
		<u> </u>	ਹਾਲ								
教育方法	太寺	 == =			F			550 I±/5-4-5			
既要		電気・管 得する。	邑子凹路、電気 和	機器等に関する基本事項	見について実験を行	い、その動作原埋を	を良く埋解すると共にま	長験技術を			
受業の進む	 め方・方法	実験レ7	以上を合格とす	▶裁10%・原理や手順等2 -る.	20%·実験結果30%	 6·考察30%·仮提出		こより評価			
———— +幸 ⊢				験は実施しない。	ハナス ひ亜ギナス	- ロ胆反声でについて					
主意点		局字年の	ノ夫験 で用いる	測定技術を確りと身にて	ハバる必要かある。	メ関係事項について	、艮く調宜りる事。				
受業計画	<u> </u>	Т									
	1	週	授業内容			週ごとの到達目標					
		1週	実験ガイダン	·ス1		前期実験に関する全体的な説明					
		2週	実験ガイダン	ス2		の原理に関する説明	 に関する説明				
		3週	実験ガイダン	·ス3		シンクロスコープによる各種波形の観測の実習					
		4週	予備実験 1			RC直列回路の過渡現象の実験					
	1stQ	5週	予備実験 2			RLC直列共振回路の実験					
		6週	予備実験3			RLC並列共振回路の実験					
		7週	総合演習			予備実験のまとめ					
		8週	実験 1			過渡現象応用実験I					
前期		9週	実験 2			過渡現象応用実験II					
		10週	実験 3			直流電動機・直流発電機の実験					
		11週	実験 4			直流電動機・直流発電機の美験 電位分布の測定					
		12週	実験 5			電位分布の測定 交流ブリッジ回路の実験					
	2ndQ	13週	実験 6			交流プリツン回路の美験					
						実験に関する検討と再実験の実施					
		14週	実験 7								
		15週	実験 8			実験に関する検討	と冉美験の美施				
		16週				1					
	1	1週	実験ガイダン			プの解析					
	1	2週		ミ験ガイダンス 2			トランジスタアンプの設計				
	1	3週	予備実験 1				トランジスタアンプの製作 – 1				
	3rdQ	4週	予備実験 2				トランジスタアンプの製作 – 2				
後期		5週	実験ガイダン	ス3		実験内容の説明 – 1					
		6週	実験ガイダン	·ス4		実験内容の説明 – 2					
	1	7週	実験 1			トランジスタ増幅器の特性測定					
		8週	実験 2		小型		型モータの実験				
	4thQ	9週	実験 3			三相電力・力率の	測定				
		10週	実験 4			単相変圧器の特性および三相結線の実験					
		11週	実験 5				TTL-ICの基本特性				
		12週	実験 6				ディジタル回路実習 I				
		13週		<u>験ガイダンス 5</u>			単安定マルチバイブレータの解析				
		14週		ミ験ガイダンス 6			単安定マルチバイブレータの設計・製作 – 1				
		15週	予備実験3				単安定マルチバイブレータの設計・製作 - 2				
	1	16週	コール出入点入り	半女にマルナバイブレー							
	<u> </u>		╱ ╓ ╝╝┯╚╸╷								
ᆫᅮᆡᄼ	<u> </u>)学習内容と		1 law						
		分野	学習内容	容 学習内容の到達目	排標		到達レベル	・ 授業週			
<u> </u>			I								
	V mseq	っ _て 雷気	· 電子 -								
	分野別の 力 学実験	の工 電気 系分野	電子 電気・電気・電気・電気・電気・調 系【実験	電子 抵抗・インピータ	ブンスの測定が実践		4				

				<u></u>	キルヒホッフの法則	川を適用し、実験結	果を考察できる。		4		
					分流・分圧の関係を適用し、実験結果を考察できる。						
					ブリッジ回路の平衡条件を適用し、実験結果を考察できる。						
				[重ねの理を適用し、実験結果を考察できる。						
		インピーダンスの周波数特性を考慮し、実験結果を考察できる。					できる。	4			
	共振について、実験結果を考察できる。						4				
	増幅回路等(トランジスタ、オペアンプ)の動作に関する実験結 を考察できる。						実験結果	4			
	論理回路の動作について実験結果を考察できる。					4					
	ダイオードの電気的特性の測定法を習得し、その実験結果を考察 できる。					果を考察	4				
					トランジスタの電気 察できる。	気的特性の測定法を	習得し、その実験	結果を考	4		
				ディジタルICの使用方法を習得する。			4				
評価割合											
	試験		実験	ー シンポート	相互評価	態度	ポートフォリオ	その他		合計	
総合評価割合			100		0	0	0	0	100		
基礎的能力	0		100		0	0	0	0	100		
専門的能力 0		0		0	0	0	0	0			
分野横断的能力 0		0		0	0	0	0	0			