小山	工業高等	轉門	学校		開講年度	平成29年度 (2	.017年度)	授	業科目	5用物理	I		
科目基礎							,						
科目番号 0003						科目区分		専門 / 必修					
授業形態 講義			義				単位の種別と単	位数	履修単位: 1	L			
開設学科電気電子創			創造工	学科	対象学年		3						
開設期後期						週時間数	2						
教科書/教材 初歩から学ぶ 本図書				学ぶ基	ないまでである。				学ぶ基礎物理	学熱・	波動 柴田洋	f一他 大日	
担当教員		鳶	藤 智										
到達目標 1. 剛体の 2. 波動の	 の力学に関	する 質・原	基礎的た 原理を用	い間題を 引いて、	解くことがは 波動現象の	出来る。 基礎的な問題を解く。	ことが出来る。音	や光が	皮動の性質を	持つこと	を理解する。		
ルーブリ	ノック												
				理机	理想的な到達レベルの目安標準的な到達し						ベルの目安		
評価項目1				剛を正	本の力学に関 E確に解くこ	剛体の力学に関する基礎的な問題 を解くことが出来る。			剛体の力学に関する基礎的な問題を解くことが出来ない。				
評価項目2				、別に角	動に関する性 皮動現象の基 解くことが出 の性質を持つ る。	、波動現象の基礎的な問題を解く ことが出来る。音や光が波動の性			波動に関する性質・原理を用いて、波動現象の基礎的な問題を解くことが出来ない。音や光が波動の性質を持つことを理解できない。				
評価項目3	3												
学科の発	到達目標	頁目	との関]係									
	育到達度目												
<u> </u>													
既要			分積分	を用い		 学と波動現象につい ⁻	 C学ぶ						
	め方・七汁	1	. 授業	方法は	講義と演習る	<u></u> を組み合わせて行う。	,						
文系の進む	め方・方法	2	. 理解	度を確	認のため、流	寅習問題を課題として	<u>て出し、レポート</u>						
主意点			宅での	自学自	習を必ず行き	うこと。帰宅後、授 の問題を解くこと。	業ノートと教科書	を読み	内容を理解し	た上で、	授業で扱った	演習問題、	
受業計画	 <u></u>												
		週		授業内]容			週ごと	の到達目標				
後期		1週	l.	カのモーメント,剛体のつりあい				カのつ	り合いに関す	する計算が	ができる。 できる。重	心の定義に1	
		2週	ī.	 角運動量,慣性モーメント				いて理解し、重心に関する計算ができる。 角運動量を求めることができる。				•	
		3週		角運動量保存則				角運動量保存則について理解し、様々な物理量の計算 に利用できる。					
	3rdQ	4週	[剛体の回転と慣性モーメント				ー様な棒などの簡単な形状に対する慣性モーメントを 求めることができる。					
		5週		回転の運動方程式				剛体の回転運動について、回転の運動方程式を立て 解くことができる。				程式を立てて	
		6週		剛体の	平面運動	剛体の平面運動に とができる。				ついて、運動方程式を立てて解くる			
		7追		中間証	糠		これまでの内容を理解す			里解する	する		
		8週		答案返却と説明				これま	での内容を理	里解する			
	4thQ	9週	ļ	波の要素,波の基本式,縦波と横波				波の波長、周期、振動数、速さについて説明できる。 横波と縦波の違いについて説明できる。					
		10)	周	重ね合 干渉	わせの原理、	、定常波と反射波の位相, 平面波の		波の重ね合わせの原理を理解している。波の独立性を 理解している。2つの波が干渉するとき、互いに強め あう条件と弱めあう条件について説明できる。定常波 の特徴(節、腹の振動のようすなど)を理解している 。					
		113			マイヘンスの原理、反射の法則、屈折の法則,ドップ ラー効果				ホイヘンスの原理を理解している。波の反射の法則、 屈折の法則、および回折について説明できる。				
		12)			弦波の数学的表現			正弦波の数学的表現を理解する。					
		13)	周	音波	(音の干渉,	音の干渉, うなり, 弦の固有振動、気柱共鳴)		弦の長さと、弦を伝わる波の速さから、弦の固有振動数を求めることができる。気柱の長さと音速から、陽管、閉管の固有振動数を求めることができる(開口端補正は考えない)。					
		14)	周	音波	な(ドップラー効果)			ー直線上の運動において、ドップラー効果による音の 振動数変化を求めることができる。					
		15)	15週 光波性質)		皮(光の進み方, 反射・屈折の法則, 干渉, 光波の 夏)			光の反射角、屈折角に関する計算ができる。波長のいによる分散現象によってスペクトルが生じることで理解している。自然光と偏光の違いについて説明できる。					
		16	16週 定期		朝試験			これまでの範囲を理解する。					
モデル	コアカリ		_		***^ 内容と到道				, 5 — 6 -				
<u>こファレー</u> 分類	_ / / / / / -	<u> </u>	分野		学習内容	学習内容の到達目標					到達レベル	授業週	
			,,,,,,		, 111,111	力のモーメントを		 る。			2	後16	
基礎的能力	 カ 自然科:	学	物理		力学	角運動量を求めることができる。				2	後1		
		-	ı —	1		角運動量保存則について具体的な例を挙げて説明できる。							

									後4
				重心に関する計算ができる。				2	後10
				ー様な棒などの簡単な形状に対する慣性モーメントを求めること ができる。					後4
				剛体の回転運動について、回転の運動方程式を立てて解くことができる。				2	後4
				波の振幅、波長、周期、振動数、速さについて説明できる。					後9
]	横波と縦波の違いについて説明できる。					後9
				波の重ね合わせの原理について説明できる。				2	後10
				波の独立性について説明できる。				2	後10
				2つの波が干渉するとき、互いに強めあう条件と弱めあう条件について計算できる。				2	後10
				定常波の特徴(節、腹の振動のようすなど)を説明できる。					後15
			<u> </u>	ホイヘンスの原理について説明できる。				2	後11
			<u>[</u>	波の反射の法則、屈折の法則、および回折について説明できる。				2	後11
				弦の長さと弦を伝わる波の速さから、弦の固有振動数を求めることができる。				2	後12
				気柱の長さと音速から、開管、閉管の固有振動数を求めることができる(開口端補正は考えない)。				2	後13
			-	共振、共鳴現象について具体例を挙げることができる。				2	
				ー直線上の運動において、ドップラー効果による音の振動数変化を求めることができる。				2	後14
				自然光と偏光の違いについて説明できる。				2	後16
			<u> </u>	光の反射角、屈折角に関する計算ができる。				2	後15
				波長の違いによる分散現象によってスペクトルが生じることを説明できる。				2	後15
評価割合			<u> </u>						
	試験	発	表	相互評価	態度	ポートフォリオ	その他	<u></u> {	計
総合評価割合	80		· · · · · · · · · · · · · · · · · · ·	0	0	0	20	1	.00
基礎的能力	礎的能力 80			0	0	0	20	1	.00
専門的能力	門的能力 0 0			0	0 0 0		0	C)
分野横断的能力	0	0		0	0	0	0	C)